Spaces:
Sleeping
Sleeping
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Frechet Inception Distance (FID) from the paper | |
"GANs trained by a two time-scale update rule converge to a local Nash | |
equilibrium". Matches the original implementation by Heusel et al. at | |
https://github.com/bioinf-jku/TTUR/blob/master/fid.py""" | |
import numpy as np | |
import scipy.linalg | |
from . import metric_utils | |
#---------------------------------------------------------------------------- | |
def compute_fid(opts, max_real, num_gen): | |
# Direct TorchScript translation of http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz | |
detector_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/inception-2015-12-05.pkl' | |
detector_kwargs = dict(return_features=True) # Return raw features before the softmax layer. | |
mu_real, sigma_real = metric_utils.compute_feature_stats_for_dataset( | |
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs, | |
rel_lo=0, rel_hi=0, capture_mean_cov=True, max_items=max_real).get_mean_cov() | |
mu_gen, sigma_gen = metric_utils.compute_feature_stats_for_generator( | |
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs, | |
rel_lo=0, rel_hi=1, capture_mean_cov=True, max_items=num_gen).get_mean_cov() | |
if opts.rank != 0: | |
return float('nan') | |
m = np.square(mu_gen - mu_real).sum() | |
s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member | |
fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2)) | |
return float(fid) | |
#---------------------------------------------------------------------------- | |