R3GAN / app.py
multimodalart's picture
Update app.py
184cf5f verified
import os
import numpy as np
import torch
import PIL.Image
import gradio as gr
import dnnlib
import legacy
from huggingface_hub import hf_hub_download
# ImageNet class names (1000 classes)
imagenet_classes = {
0: "tench, Tinca tinca",
1: "goldfish, Carassius auratus",
2: "great white shark, white shark, man-eater, man-eating shark, Carcharodon caharias',",
3: "tiger shark, Galeocerdo cuvieri",
4: "hammerhead, hammerhead shark",
5: "electric ray, crampfish, numbfish, torpedo",
6: "stingray",
7: "cock",
8: "hen",
9: "ostrich, Struthio camelus",
10: "brambling, Fringilla montifringilla",
11: "goldfinch, Carduelis carduelis",
12: "house finch, linnet, Carpodacus mexicanus",
13: "junco, snowbird",
14: "indigo bunting, indigo finch, indigo bird, Passerina cyanea",
15: "robin, American robin, Turdus migratorius",
16: "bulbul",
17: "jay",
18: "magpie",
19: "chickadee",
20: "water ouzel, dipper",
21: "kite",
22: "bald eagle, American eagle, Haliaeetus leucocephalus",
23: "vulture",
24: "great grey owl, great gray owl, Strix nebulosa",
25: "European fire salamander, Salamandra salamandra",
26: "common newt, Triturus vulgaris",
27: "eft",
28: "spotted salamander, Ambystoma maculatum",
29: "axolotl, mud puppy, Ambystoma mexicanum",
30: "bullfrog, Rana catesbeiana",
31: "tree frog, tree-frog",
32: "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui",
33: "loggerhead, loggerhead turtle, Caretta caretta",
34: "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea",
35: "mud turtle",
36: "terrapin",
37: "box turtle, box tortoise",
38: "banded gecko",
39: "common iguana, iguana, Iguana iguana",
40: "American chameleon, anole, Anolis carolinensis",
41: "whiptail, whiptail lizard",
42: "agama",
43: "frilled lizard, Chlamydosaurus kingi",
44: "alligator lizard",
45: "Gila monster, Heloderma suspectum",
46: "green lizard, Lacerta viridis",
47: "African chameleon, Chamaeleo chamaeleon",
48: "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoeis',",
49: "African crocodile, Nile crocodile, Crocodylus niloticus",
50: "American alligator, Alligator mississipiensis",
51: "triceratops",
52: "thunder snake, worm snake, Carphophis amoenus",
53: "ringneck snake, ring-necked snake, ring snake",
54: "hognose snake, puff adder, sand viper",
55: "green snake, grass snake",
56: "king snake, kingsnake",
57: "garter snake, grass snake",
58: "water snake",
59: "vine snake",
60: "night snake, Hypsiglena torquata",
61: "boa constrictor, Constrictor constrictor",
62: "rock python, rock snake, Python sebae",
63: "Indian cobra, Naja naja",
64: "green mamba",
65: "sea snake",
66: "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus",
67: "diamondback, diamondback rattlesnake, Crotalus adamanteus",
68: "sidewinder, horned rattlesnake, Crotalus cerastes",
69: "trilobite",
70: "harvestman, daddy longlegs, Phalangium opilio",
71: "scorpion",
72: "black and gold garden spider, Argiope aurantia",
73: "barn spider, Araneus cavaticus",
74: "garden spider, Aranea diademata",
75: "black widow, Latrodectus mactans",
76: "tarantula",
77: "wolf spider, hunting spider",
78: "tick",
79: "centipede",
80: "black grouse",
81: "ptarmigan",
82: "ruffed grouse, partridge, Bonasa umbellus",
83: "prairie chicken, prairie grouse, prairie fowl",
84: "peacock",
85: "quail",
86: "partridge",
87: "African grey, African gray, Psittacus erithacus",
88: "macaw",
89: "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita",
90: "lorikeet",
91: "coucal",
92: "bee eater",
93: "hornbill",
94: "hummingbird",
95: "jacamar",
96: "toucan",
97: "drake",
98: "red-breasted merganser, Mergus serrator",
99: "goose",
100: "black swan, Cygnus atratus",
101: "tusker",
102: "echidna, spiny anteater, anteater",
103: "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhyhus anatinus',",
104: "wallaby, brush kangaroo",
105: "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus",
106: "wombat",
107: "jellyfish",
108: "sea anemone, anemone",
109: "brain coral",
110: "flatworm, platyhelminth",
111: "nematode, nematode worm, roundworm",
112: "conch",
113: "snail",
114: "slug",
115: "sea slug, nudibranch",
116: "chiton, coat-of-mail shell, sea cradle, polyplacophore",
117: "chambered nautilus, pearly nautilus, nautilus",
118: "Dungeness crab, Cancer magister",
119: "rock crab, Cancer irroratus",
120: "fiddler crab",
121: "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodesamtschatica',",
122: "American lobster, Northern lobster, Maine lobster, Homarus americanus",
123: "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish",
124: "crayfish, crawfish, crawdad, crawdaddy",
125: "hermit crab",
126: "isopod",
127: "white stork, Ciconia ciconia",
128: "black stork, Ciconia nigra",
129: "spoonbill",
130: "flamingo",
131: "little blue heron, Egretta caerulea",
132: "American egret, great white heron, Egretta albus",
133: "bittern",
134: "crane, bird",
135: "limpkin, Aramus pictus",
136: "European gallinule, Porphyrio porphyrio",
137: "American coot, marsh hen, mud hen, water hen, Fulica americana",
138: "bustard",
139: "ruddy turnstone, Arenaria interpres",
140: "red-backed sandpiper, dunlin, Erolia alpina",
141: "redshank, Tringa totanus",
142: "dowitcher",
143: "oystercatcher, oyster catcher",
144: "pelican",
145: "king penguin, Aptenodytes patagonica",
146: "albatross, mollymawk",
147: "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius rostus',",
148: "killer whale, killer, orca, grampus, sea wolf, Orcinus orca",
149: "dugong, Dugong dugon",
150: "sea lion",
151: "Chihuahua",
152: "Japanese spaniel",
153: "Maltese dog, Maltese terrier, Maltese",
154: "Pekinese, Pekingese, Peke",
155: "Shih-Tzu",
156: "Blenheim spaniel",
157: "papillon",
158: "toy terrier",
159: "Rhodesian ridgeback",
160: "Afghan hound, Afghan",
161: "basset, basset hound",
162: "beagle",
163: "bloodhound, sleuthhound",
164: "bluetick",
165: "black-and-tan coonhound",
166: "Walker hound, Walker foxhound",
167: "English foxhound",
168: "redbone",
169: "borzoi, Russian wolfhound",
170: "Irish wolfhound",
171: "Italian greyhound",
172: "whippet",
173: "Ibizan hound, Ibizan Podenco",
174: "Norwegian elkhound, elkhound",
175: "otterhound, otter hound",
176: "Saluki, gazelle hound",
177: "Scottish deerhound, deerhound",
178: "Weimaraner",
179: "Staffordshire bullterrier, Staffordshire bull terrier",
180: "American Staffordshire terrier, Staffordshire terrier, American pit bull rrier, pit bull terrier',",
181: "Bedlington terrier",
182: "Border terrier",
183: "Kerry blue terrier",
184: "Irish terrier",
185: "Norfolk terrier",
186: "Norwich terrier",
187: "Yorkshire terrier",
188: "wire-haired fox terrier",
189: "Lakeland terrier",
190: "Sealyham terrier, Sealyham",
191: "Airedale, Airedale terrier",
192: "cairn, cairn terrier",
193: "Australian terrier",
194: "Dandie Dinmont, Dandie Dinmont terrier",
195: "Boston bull, Boston terrier",
196: "miniature schnauzer",
197: "giant schnauzer",
198: "standard schnauzer",
199: "Scotch terrier, Scottish terrier, Scottie",
200: "Tibetan terrier, chrysanthemum dog",
201: "silky terrier, Sydney silky",
202: "soft-coated wheaten terrier",
203: "West Highland white terrier",
204: "Lhasa, Lhasa apso",
205: "flat-coated retriever",
206: "curly-coated retriever",
207: "golden retriever",
208: "Labrador retriever",
209: "Chesapeake Bay retriever",
210: "German short-haired pointer",
211: "vizsla, Hungarian pointer",
212: "English setter",
213: "Irish setter, red setter",
214: "Gordon setter",
215: "Brittany spaniel",
216: "clumber, clumber spaniel",
217: "English springer, English springer spaniel",
218: "Welsh springer spaniel",
219: "cocker spaniel, English cocker spaniel, cocker",
220: "Sussex spaniel",
221: "Irish water spaniel",
222: "kuvasz",
223: "schipperke",
224: "groenendael",
225: "malinois",
226: "briard",
227: "kelpie",
228: "komondor",
229: "Old English sheepdog, bobtail",
230: "Shetland sheepdog, Shetland sheep dog, Shetland",
231: "collie",
232: "Border collie",
233: "Bouvier des Flandres, Bouviers des Flandres",
234: "Rottweiler",
235: "German shepherd, German shepherd dog, German police dog, alsatian",
236: "Doberman, Doberman pinscher",
237: "miniature pinscher",
238: "Greater Swiss Mountain dog",
239: "Bernese mountain dog",
240: "Appenzeller",
241: "EntleBucher",
242: "boxer",
243: "bull mastiff",
244: "Tibetan mastiff",
245: "French bulldog",
246: "Great Dane",
247: "Saint Bernard, St Bernard",
248: "Eskimo dog, husky",
249: "malamute, malemute, Alaskan malamute",
250: "Siberian husky",
251: "dalmatian, coach dog, carriage dog",
252: "affenpinscher, monkey pinscher, monkey dog",
253: "basenji",
254: "pug, pug-dog",
255: "Leonberg",
256: "Newfoundland, Newfoundland dog",
257: "Great Pyrenees",
258: "Samoyed, Samoyede",
259: "Pomeranian",
260: "chow, chow chow",
261: "keeshond",
262: "Brabancon griffon",
263: "Pembroke, Pembroke Welsh corgi",
264: "Cardigan, Cardigan Welsh corgi",
265: "toy poodle",
266: "miniature poodle",
267: "standard poodle",
268: "Mexican hairless",
269: "timber wolf, grey wolf, gray wolf, Canis lupus",
270: "white wolf, Arctic wolf, Canis lupus tundrarum",
271: "red wolf, maned wolf, Canis rufus, Canis niger",
272: "coyote, prairie wolf, brush wolf, Canis latrans",
273: "dingo, warrigal, warragal, Canis dingo",
274: "dhole, Cuon alpinus",
275: "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus",
276: "hyena, hyaena",
277: "red fox, Vulpes vulpes",
278: "kit fox, Vulpes macrotis",
279: "Arctic fox, white fox, Alopex lagopus",
280: "grey fox, gray fox, Urocyon cinereoargenteus",
281: "tabby, tabby cat",
282: "tiger cat",
283: "Persian cat",
284: "Siamese cat, Siamese",
285: "Egyptian cat",
286: "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor",
287: "lynx, catamount",
288: "leopard, Panthera pardus",
289: "snow leopard, ounce, Panthera uncia",
290: "jaguar, panther, Panthera onca, Felis onca",
291: "lion, king of beasts, Panthera leo",
292: "tiger, Panthera tigris",
293: "cheetah, chetah, Acinonyx jubatus",
294: "brown bear, bruin, Ursus arctos",
295: "American black bear, black bear, Ursus americanus, Euarctos americanus",
296: "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus",
297: "sloth bear, Melursus ursinus, Ursus ursinus",
298: "mongoose",
299: "meerkat, mierkat",
300: "tiger beetle",
301: "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle",
302: "ground beetle, carabid beetle",
303: "long-horned beetle, longicorn, longicorn beetle",
304: "leaf beetle, chrysomelid",
305: "dung beetle",
306: "rhinoceros beetle",
307: "weevil",
308: "fly",
309: "bee",
310: "ant, emmet, pismire",
311: "grasshopper, hopper",
312: "cricket",
313: "walking stick, walkingstick, stick insect",
314: "cockroach, roach",
315: "mantis, mantid",
316: "cicada, cicala",
317: "leafhopper",
318: "lacewing, lacewing fly",
319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake fder, snake doctor, mosquito hawk, skeeter hawk",
320: "damselfly",
321: "admiral",
322: "ringlet, ringlet butterfly",
323: "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
324: "cabbage butterfly",
325: "sulphur butterfly, sulfur butterfly",
326: "lycaenid, lycaenid butterfly",
327: "starfish, sea star",
328: "sea urchin",
329: "sea cucumber, holothurian",
330: "wood rabbit, cottontail, cottontail rabbit",
331: "hare",
332: "Angora, Angora rabbit",
333: "hamster",
334: "porcupine, hedgehog",
335: "fox squirrel, eastern fox squirrel, Sciurus niger",
336: "marmot",
337: "beaver",
338: "guinea pig, Cavia cobaya",
339: "sorrel",
340: "zebra",
341: "hog, pig, grunter, squealer, Sus scrofa",
342: "wild boar, boar, Sus scrofa",
343: "warthog",
344: "hippopotamus, hippo, river horse, Hippopotamus amphibius",
345: "ox",
346: "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis",
347: "bison",
348: "ram, tup",
349: "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain eep, Ovis canadensis',",
350: "ibex, Capra ibex",
351: "hartebeest",
352: "impala, Aepyceros melampus",
353: "gazelle",
354: "Arabian camel, dromedary, Camelus dromedarius",
355: "llama",
356: "weasel",
357: "mink",
358: "polecat, fitch, foulmart, foumart, Mustela putorius",
359: "black-footed ferret, ferret, Mustela nigripes",
360: "otter",
361: "skunk, polecat, wood pussy",
362: "badger",
363: "armadillo",
364: "three-toed sloth, ai, Bradypus tridactylus",
365: "orangutan, orang, orangutang, Pongo pygmaeus",
366: "gorilla, Gorilla gorilla",
367: "chimpanzee, chimp, Pan troglodytes",
368: "gibbon, Hylobates lar",
369: "siamang, Hylobates syndactylus, Symphalangus syndactylus",
370: "guenon, guenon monkey",
371: "patas, hussar monkey, Erythrocebus patas",
372: "baboon",
373: "macaque",
374: "langur",
375: "colobus, colobus monkey",
376: "proboscis monkey, Nasalis larvatus",
377: "marmoset",
378: "capuchin, ringtail, Cebus capucinus",
379: "howler monkey, howler",
380: "titi, titi monkey",
381: "spider monkey, Ateles geoffroyi",
382: "squirrel monkey, Saimiri sciureus",
383: "Madagascar cat, ring-tailed lemur, Lemur catta",
384: "indri, indris, Indri indri, Indri brevicaudatus",
385: "Indian elephant, Elephas maximus",
386: "African elephant, Loxodonta africana",
387: "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens",
388: "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca",
389: "barracouta, snoek",
390: "eel",
391: "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch",
392: "rock beauty, Holocanthus tricolor",
393: "anemone fish",
394: "sturgeon",
395: "gar, garfish, garpike, billfish, Lepisosteus osseus",
396: "lionfish",
397: "puffer, pufferfish, blowfish, globefish",
398: "abacus",
399: "abaya",
400: "academic gown, academic robe, judge's robe",
401: "accordion, piano accordion, squeeze box",
402: "acoustic guitar",
403: "aircraft carrier, carrier, flattop, attack aircraft carrier",
404: "airliner",
405: "airship, dirigible",
406: "altar",
407: "ambulance",
408: "amphibian, amphibious vehicle",
409: "analog clock",
410: "apiary, bee house",
411: "apron",
412: "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustb, trash barrel, trash bin',",
413: "assault rifle, assault gun",
414: "backpack, back pack, knapsack, packsack, rucksack, haversack",
415: "bakery, bakeshop, bakehouse",
416: "balance beam, beam",
417: "balloon",
418: "ballpoint, ballpoint pen, ballpen, Biro",
419: "Band Aid",
420: "banjo",
421: "bannister, banister, balustrade, balusters, handrail",
422: "barbell",
423: "barber chair",
424: "barbershop",
425: "barn",
426: "barometer",
427: "barrel, cask",
428: "barrow, garden cart, lawn cart, wheelbarrow",
429: "baseball",
430: "basketball",
431: "bassinet",
432: "bassoon",
433: "bathing cap, swimming cap",
434: "bath towel",
435: "bathtub, bathing tub, bath, tub",
436: "beach wagon, station wagon, wagon, estate car, beach waggon, station wagg, waggon',",
437: "beacon, lighthouse, beacon light, pharos",
438: "beaker",
439: "bearskin, busby, shako",
440: "beer bottle",
441: "beer glass",
442: "bell cote, bell cot",
443: "bib",
444: "bicycle-built-for-two, tandem bicycle, tandem",
445: "bikini, two-piece",
446: "binder, ring-binder",
447: "binoculars, field glasses, opera glasses",
448: "birdhouse",
449: "boathouse",
450: "bobsled, bobsleigh, bob",
451: "bolo tie, bolo, bola tie, bola",
452: "bonnet, poke bonnet",
453: "bookcase",
454: "bookshop, bookstore, bookstall",
455: "bottlecap",
456: "bow",
457: "bow tie, bow-tie, bowtie",
458: "brass, memorial tablet, plaque",
459: "brassiere, bra, bandeau",
460: "breakwater, groin, groyne, mole, bulwark, seawall, jetty",
461: "breastplate, aegis, egis",
462: "broom",
463: "bucket, pail",
464: "buckle",
465: "bulletproof vest",
466: "bullet train, bullet",
467: "butcher shop, meat market",
468: "cab, hack, taxi, taxicab",
469: "caldron, cauldron",
470: "candle, taper, wax light",
471: "cannon",
472: "canoe",
473: "can opener, tin opener",
474: "cardigan",
475: "car mirror",
476: "carousel, carrousel, merry-go-round, roundabout, whirligig",
477: "carpenter's kit, tool kit",
478: "carton",
479: "car wheel",
480: "cash machine, cash dispenser, automated teller machine, automatic teller chine, automated teller, automatic teller, ATM',",
481: "cassette",
482: "cassette player",
483: "castle",
484: "catamaran",
485: "CD player",
486: "cello, violoncello",
487: "cellular telephone, cellular phone, cellphone, cell, mobile phone",
488: "chain",
489: "chainlink fence",
490: "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring mour',",
491: "chain saw, chainsaw",
492: "chest",
493: "chiffonier, commode",
494: "chime, bell, gong",
495: "china cabinet, china closet",
496: "Christmas stocking",
497: "church, church building",
498: "cinema, movie theater, movie theatre, movie house, picture palace",
499: "cleaver, meat cleaver, chopper",
500: "cliff dwelling",
501: "cloak",
502: "clog, geta, patten, sabot",
503: "cocktail shaker",
504: "coffee mug",
505: "coffeepot",
506: "coil, spiral, volute, whorl, helix",
507: "combination lock",
508: "computer keyboard, keypad",
509: "confectionery, confectionary, candy store",
510: "container ship, containership, container vessel",
511: "convertible",
512: "corkscrew, bottle screw",
513: "cornet, horn, trumpet, trump",
514: "cowboy boot",
515: "cowboy hat, ten-gallon hat",
516: "cradle",
517: "crane",
518: "crash helmet",
519: "crate",
520: "crib, cot",
521: "Crock Pot",
522: "croquet ball",
523: "crutch",
524: "cuirass",
525: "dam, dike, dyke",
526: "desk",
527: "desktop computer",
528: "dial telephone, dial phone",
529: "diaper, nappy, napkin",
530: "digital clock",
531: "digital watch",
532: "dining table, board",
533: "dishrag, dishcloth",
534: "dishwasher, dish washer, dishwashing machine",
535: "disk brake, disc brake",
536: "dock, dockage, docking facility",
537: "dogsled, dog sled, dog sleigh",
538: "dome",
539: "doormat, welcome mat",
540: "drilling platform, offshore rig",
541: "drum, membranophone, tympan",
542: "drumstick",
543: "dumbbell",
544: "Dutch oven",
545: "electric fan, blower",
546: "electric guitar",
547: "electric locomotive",
548: "entertainment center",
549: "envelope",
550: "espresso maker",
551: "face powder",
552: "feather boa, boa",
553: "file, file cabinet, filing cabinet",
554: "fireboat",
555: "fire engine, fire truck",
556: "fire screen, fireguard",
557: "flagpole, flagstaff",
558: "flute, transverse flute",
559: "folding chair",
560: "football helmet",
561: "forklift",
562: "fountain",
563: "fountain pen",
564: "four-poster",
565: "freight car",
566: "French horn, horn",
567: "frying pan, frypan, skillet",
568: "fur coat",
569: "garbage truck, dustcart",
570: "gasmask, respirator, gas helmet",
571: "gas pump, gasoline pump, petrol pump, island dispenser",
572: "goblet",
573: "go-kart",
574: "golf ball",
575: "golfcart, golf cart",
576: "gondola",
577: "gong, tam-tam",
578: "gown",
579: "grand piano, grand",
580: "greenhouse, nursery, glasshouse",
581: "grille, radiator grille",
582: "grocery store, grocery, food market, market",
583: "guillotine",
584: "hair slide",
585: "hair spray",
586: "half track",
587: "hammer",
588: "hamper",
589: "hand blower, blow dryer, blow drier, hair dryer, hair drier",
590: "hand-held computer, hand-held microcomputer",
591: "handkerchief, hankie, hanky, hankey",
592: "hard disc, hard disk, fixed disk",
593: "harmonica, mouth organ, harp, mouth harp",
594: "harp",
595: "harvester, reaper",
596: "hatchet",
597: "holster",
598: "home theater, home theatre",
599: "honeycomb",
600: "hook, claw",
601: "hoopskirt, crinoline",
602: "horizontal bar, high bar",
603: "horse cart, horse-cart",
604: "hourglass",
605: "iPod",
606: "iron, smoothing iron",
607: "jack-o'-lantern",
608: "jean, blue jean, denim",
609: "jeep, landrover",
610: "jersey, T-shirt, tee shirt",
611: "jigsaw puzzle",
612: "jinrikisha, ricksha, rickshaw",
613: "joystick",
614: "kimono",
615: "knee pad",
616: "knot",
617: "lab coat, laboratory coat",
618: "ladle",
619: "lampshade, lamp shade",
620: "laptop, laptop computer",
621: "lawn mower, mower",
622: "lens cap, lens cover",
623: "letter opener, paper knife, paperknife",
624: "library",
625: "lifeboat",
626: "lighter, light, igniter, ignitor",
627: "limousine, limo",
628: "liner, ocean liner",
629: "lipstick, lip rouge",
630: "Loafer",
631: "lotion",
632: "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system",
633: "loupe, jeweler's loupe",
634: "lumbermill, sawmill",
635: "magnetic compass",
636: "mailbag, postbag",
637: "mailbox, letter box",
638: "maillot",
639: "maillot, tank suit",
640: "manhole cover",
641: "maraca",
642: "marimba, xylophone",
643: "mask",
644: "matchstick",
645: "maypole",
646: "maze, labyrinth",
647: "measuring cup",
648: "medicine chest, medicine cabinet",
649: "megalith, megalithic structure",
650: "microphone, mike",
651: "microwave, microwave oven",
652: "military uniform",
653: "milk can",
654: "minibus",
655: "miniskirt, mini",
656: "minivan",
657: "missile",
658: "mitten",
659: "mixing bowl",
660: "mobile home, manufactured home",
661: "Model T",
662: "modem",
663: "monastery",
664: "monitor",
665: "moped",
666: "mortar",
667: "mortarboard",
668: "mosque",
669: "mosquito net",
670: "motor scooter, scooter",
671: "mountain bike, all-terrain bike, off-roader",
672: "mountain tent",
673: "mouse, computer mouse",
674: "mousetrap",
675: "moving van",
676: "muzzle",
677: "nail",
678: "neck brace",
679: "necklace",
680: "nipple",
681: "notebook, notebook computer",
682: "obelisk",
683: "oboe, hautboy, hautbois",
684: "ocarina, sweet potato",
685: "odometer, hodometer, mileometer, milometer",
686: "oil filter",
687: "organ, pipe organ",
688: "oscilloscope, scope, cathode-ray oscilloscope, CRO",
689: "overskirt",
690: "oxcart",
691: "oxygen mask",
692: "packet",
693: "paddle, boat paddle",
694: "paddlewheel, paddle wheel",
695: "padlock",
696: "paintbrush",
697: "pajama, pyjama, pj's, jammies",
698: "palace",
699: "panpipe, pandean pipe, syrinx",
700: "paper towel",
701: "parachute, chute",
702: "parallel bars, bars",
703: "park bench",
704: "parking meter",
705: "passenger car, coach, carriage",
706: "patio, terrace",
707: "pay-phone, pay-station",
708: "pedestal, plinth, footstall",
709: "pencil box, pencil case",
710: "pencil sharpener",
711: "perfume, essence",
712: "Petri dish",
713: "photocopier",
714: "pick, plectrum, plectron",
715: "pickelhaube",
716: "picket fence, paling",
717: "pickup, pickup truck",
718: "pier",
719: "piggy bank, penny bank",
720: "pill bottle",
721: "pillow",
722: "ping-pong ball",
723: "pinwheel",
724: "pirate, pirate ship",
725: "pitcher, ewer",
726: "plane, carpenter's plane, woodworking plane",
727: "planetarium",
728: "plastic bag",
729: "plate rack",
730: "plow, plough",
731: "plunger, plumber's helper",
732: "Polaroid camera, Polaroid Land camera",
733: "pole",
734: "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria",
735: "poncho",
736: "pool table, billiard table, snooker table",
737: "pop bottle, soda bottle",
738: "pot, flowerpot",
739: "potter's wheel",
740: "power drill",
741: "prayer rug, prayer mat",
742: "printer",
743: "prison, prison house",
744: "projectile, missile",
745: "projector",
746: "puck, hockey puck",
747: "punching bag, punch bag, punching ball, punchball",
748: "purse",
749: "quill, quill pen",
750: "quilt, comforter, comfort, puff",
751: "racer, race car, racing car",
752: "racket, racquet",
753: "radiator",
754: "radio, wireless",
755: "radio telescope, radio reflector",
756: "rain barrel",
757: "recreational vehicle, RV, R.V.",
758: "reel",
759: "reflex camera",
760: "refrigerator, icebox",
761: "remote control, remote",
762: "restaurant, eating house, eating place, eatery",
763: "revolver, six-gun, six-shooter",
764: "rifle",
765: "rocking chair, rocker",
766: "rotisserie",
767: "rubber eraser, rubber, pencil eraser",
768: "rugby ball",
769: "rule, ruler",
770: "running shoe",
771: "safe",
772: "safety pin",
773: "saltshaker, salt shaker",
774: "sandal",
775: "sarong",
776: "sax, saxophone",
777: "scabbard",
778: "scale, weighing machine",
779: "school bus",
780: "schooner",
781: "scoreboard",
782: "screen, CRT screen",
783: "screw",
784: "screwdriver",
785: "seat belt, seatbelt",
786: "sewing machine",
787: "shield, buckler",
788: "shoe shop, shoe-shop, shoe store",
789: "shoji",
790: "shopping basket",
791: "shopping cart",
792: "shovel",
793: "shower cap",
794: "shower curtain",
795: "ski",
796: "ski mask",
797: "sleeping bag",
798: "slide rule, slipstick",
799: "sliding door",
800: "slot, one-armed bandit",
801: "snorkel",
802: "snowmobile",
803: "snowplow, snowplough",
804: "soap dispenser",
805: "soccer ball",
806: "sock",
807: "solar dish, solar collector, solar furnace",
808: "sombrero",
809: "soup bowl",
810: "space bar",
811: "space heater",
812: "space shuttle",
813: "spatula",
814: "speedboat",
815: "spider web, spider's web",
816: "spindle",
817: "sports car, sport car",
818: "spotlight, spot",
819: "stage",
820: "steam locomotive",
821: "steel arch bridge",
822: "steel drum",
823: "stethoscope",
824: "stole",
825: "stone wall",
826: "stopwatch, stop watch",
827: "stove",
828: "strainer",
829: "streetcar, tram, tramcar, trolley, trolley car",
830: "stretcher",
831: "studio couch, day bed",
832: "stupa, tope",
833: "submarine, pigboat, sub, U-boat",
834: "suit, suit of clothes",
835: "sundial",
836: "sunglass",
837: "sunglasses, dark glasses, shades",
838: "sunscreen, sunblock, sun blocker",
839: "suspension bridge",
840: "swab, swob, mop",
841: "sweatshirt",
842: "swimming trunks, bathing trunks",
843: "swing",
844: "switch, electric switch, electrical switch",
845: "syringe",
846: "table lamp",
847: "tank, army tank, armored combat vehicle, armoured combat vehicle",
848: "tape player",
849: "teapot",
850: "teddy, teddy bear",
851: "television, television system",
852: "tennis ball",
853: "thatch, thatched roof",
854: "theater curtain, theatre curtain",
855: "thimble",
856: "thresher, thrasher, threshing machine",
857: "throne",
858: "tile roof",
859: "toaster",
860: "tobacco shop, tobacconist shop, tobacconist",
861: "toilet seat",
862: "torch",
863: "totem pole",
864: "tow truck, tow car, wrecker",
865: "toyshop",
866: "tractor",
867: "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, sem,",
868: "tray",
869: "trench coat",
870: "tricycle, trike, velocipede",
871: "trimaran",
872: "tripod",
873: "triumphal arch",
874: "trolleybus, trolley coach, trackless trolley",
875: "trombone",
876: "tub, vat",
877: "turnstile",
878: "typewriter keyboard",
879: "umbrella",
880: "unicycle, monocycle",
881: "upright, upright piano",
882: "vacuum, vacuum cleaner",
883: "vase",
884: "vault",
885: "velvet",
886: "vending machine",
887: "vestment",
888: "viaduct",
889: "violin, fiddle",
890: "volleyball",
891: "waffle iron",
892: "wall clock",
893: "wallet, billfold, notecase, pocketbook",
894: "wardrobe, closet, press",
895: "warplane, military plane",
896: "washbasin, handbasin, washbowl, lavabo, wash-hand basin",
897: "washer, automatic washer, washing machine",
898: "water bottle",
899: "water jug",
900: "water tower",
901: "whiskey jug",
902: "whistle",
903: "wig",
904: "window screen",
905: "window shade",
906: "Windsor tie",
907: "wine bottle",
908: "wing",
909: "wok",
910: "wooden spoon",
911: "wool, woolen, woollen",
912: "worm fence, snake fence, snake-rail fence, Virginia fence",
913: "wreck",
914: "yawl",
915: "yurt",
916: "web site, website, internet site, site",
917: "comic book",
918: "crossword puzzle, crossword",
919: "street sign",
920: "traffic light, traffic signal, stoplight",
921: "book jacket, dust cover, dust jacket, dust wrapper",
922: "menu",
923: "plate",
924: "guacamole",
925: "consomme",
926: "hot pot, hotpot",
927: "trifle",
928: "ice cream, icecream",
929: "ice lolly, lolly, lollipop, popsicle",
930: "French loaf",
931: "bagel, beigel",
932: "pretzel",
933: "cheeseburger",
934: "hotdog, hot dog, red hot",
935: "mashed potato",
936: "head cabbage",
937: "broccoli",
938: "cauliflower",
939: "zucchini, courgette",
940: "spaghetti squash",
941: "acorn squash",
942: "butternut squash",
943: "cucumber, cuke",
944: "artichoke, globe artichoke",
945: "bell pepper",
946: "cardoon",
947: "mushroom",
948: "Granny Smith",
949: "strawberry",
950: "orange",
951: "lemon",
952: "fig",
953: "pineapple, ananas",
954: "banana",
955: "jackfruit, jak, jack",
956: "custard apple",
957: "pomegranate",
958: "hay",
959: "carbonara",
960: "chocolate sauce, chocolate syrup",
961: "dough",
962: "meat loaf, meatloaf",
963: "pizza, pizza pie",
964: "potpie",
965: "burrito",
966: "red wine",
967: "espresso",
968: "cup",
969: "eggnog",
970: "alp",
971: "bubble",
972: "cliff, drop, drop-off",
973: "coral reef",
974: "geyser",
975: "lakeside, lakeshore",
976: "promontory, headland, head, foreland",
977: "sandbar, sand bar",
978: "seashore, coast, seacoast, sea-coast",
979: "valley, vale",
980: "volcano",
981: "ballplayer, baseball player",
982: "groom, bridegroom",
983: "scuba diver",
984: "rapeseed",
985: "daisy",
986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripium parviflorum",
987: "corn",
988: "acorn",
989: "hip, rose hip, rosehip",
990: "buckeye, horse chestnut, conker",
991: "coral fungus",
992: "agaric",
993: "gyromitra",
994: "stinkhorn, carrion fungus",
995: "earthstar",
996: "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa",
997: "bolete",
998: "ear, spike, capitulum",
999: "toilet tissue, toilet paper, bathroom tissue",
}
path_ffhq = hf_hub_download(repo_id="brownvc/BaselineGAN-FFHQ-256x256", filename="network-snapshot-final.pkl", local_dir="ffhq")
path_imagenet = hf_hub_download(repo_id="brownvc/BaselineGAN-ImgNet-64x64-v0", filename="network-snapshot-final.pkl", local_dir="imagenet")
# Configuration
networks = {
"FFHQ (Faces) 256px": {
"path": path_ffhq,
"G": None,
"conditional": False
},
"ImageNet 64px": {
"path": path_imagenet,
"G": None,
"conditional": True
}
}
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Preload all networks
for network_name, network_info in networks.items():
print(f'Loading network {network_name} from "{network_info["path"]}"...')
with dnnlib.util.open_url(network_info["path"]) as f:
network_info["G"] = legacy.load_network_pkl(f)['G_ema'].to(device)
def generate_random_images(network_choice, class_label=None, num_images=2):
# Get the selected generator
G = networks[network_choice]["G"]
# Generate random seeds
seeds = np.random.randint(0, 100000, num_images)
# Setup labels
if networks[network_choice]["conditional"] and class_label is not None:
# Extract class index from the selection string
class_idx = int(class_label.split(':')[0])
label = torch.zeros([1, G.c_dim], device=device)
label[:, class_idx] = 1
else:
label = torch.zeros([1, G.c_dim], device=device)
# Generate and save images
output_images = []
for seed_idx, seed in enumerate(seeds):
print(f'Generating image for seed {seed} ({seed_idx+1}/{num_images}) ...')
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device)
img = G(z, label)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
pil_img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB')
output_images.append(pil_img)
return output_images
# Format ImageNet classes for dropdown
imagenet_choices = [f"{idx}: {name}" for idx, name in imagenet_classes.items()]
css = '''
.gradio-container{max-width: 640px !important}
'''
# Create Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.Markdown("# GANs are so back!? R3GAN Demo")
gr.Markdown("Demo for the stable, easy to train and modern R3GAN")
gr.Markdown("[[Paper](https://huggingface.co/papers/2501.05441)] [[Models](https://huggingface.co/collections/brownvc/r3gan-6780a350063dd44ffb1fe08a)] [[Code](https://github.com/brownvc/R3GAN/)]")
total_images = gr.State(2)
# Add radio buttons for network selection
network_choice = gr.Radio(
choices=list(networks.keys()),
value=list(networks.keys())[0],
label="Choose Network"
)
# Add conditional class selector for ImageNet
with gr.Column(visible=False) as class_selector:
class_label = gr.Dropdown(
choices=imagenet_choices,
label="ImageNet Class",
value=imagenet_choices[0],
filterable=True
)
generate_btn = gr.Button("Generate Images")
# Create a gallery to display images
gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=2,
rows=1,
height="auto"
)
with gr.Accordion("How does it work?", open=False):
gr.Markdown('''# The GAN is dead; long live the GAN! A Modern GAN Baseline
![Poster](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F620573d0522e40b4a18d8763%2FIMeKij7GEtgCHE6EY-6Uj.png)%3C%2Fspan%3E%3C!-- HTML_TAG_END -->
Abstract: There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline -- R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models.
[Read the paper](https://huggingface.co/papers/2501.05441)''')
# Show/hide class selector based on network choice
def update_class_selector(choice):
if(choice == "ImageNet 64px"):
return gr.update(visible=True), gr.update(columns=5, rows=1), 5
else:
return gr.update(visible=False), gr.update(columns=2, rows=1), 2
network_choice.change(
fn=update_class_selector,
inputs=[network_choice],
outputs=[class_selector, gallery, total_images]
)
# Connect the button to the generation function
generate_btn.click(
fn=generate_random_images,
inputs=[network_choice, class_label, total_images],
outputs=gallery
)
if __name__ == "__main__":
demo.launch(share=True)