File size: 1,901 Bytes
d35ea9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

"""Inception Score (IS) from the paper "Improved techniques for training
GANs". Matches the original implementation by Salimans et al. at
https://github.com/openai/improved-gan/blob/master/inception_score/model.py"""

import numpy as np
from . import metric_utils

#----------------------------------------------------------------------------

def compute_is(opts, num_gen, num_splits):
    # Direct TorchScript translation of http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
    detector_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/inception-2015-12-05.pkl'
    detector_kwargs = dict(no_output_bias=True) # Match the original implementation by not applying bias in the softmax layer.

    gen_probs = metric_utils.compute_feature_stats_for_generator(
        opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs,
        capture_all=True, max_items=num_gen).get_all()

    if opts.rank != 0:
        return float('nan'), float('nan')

    scores = []
    for i in range(num_splits):
        part = gen_probs[i * num_gen // num_splits : (i + 1) * num_gen // num_splits]
        kl = part * (np.log(part) - np.log(np.mean(part, axis=0, keepdims=True)))
        kl = np.mean(np.sum(kl, axis=1))
        scores.append(np.exp(kl))
    return float(np.mean(scores)), float(np.std(scores))

#----------------------------------------------------------------------------