Spaces:
Sleeping
Sleeping
File size: 2,104 Bytes
d35ea9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Loss functions."""
from torch_utils import training_stats
from R3GAN.Trainer import AdversarialTraining
import torch
#----------------------------------------------------------------------------
class R3GANLoss:
def __init__(self, G, D, augment_pipe=None):
self.trainer = AdversarialTraining(G, D)
if augment_pipe is not None:
self.preprocessor = lambda x: augment_pipe(x.to(torch.float32)).to(x.dtype)
else:
self.preprocessor = lambda x: x
def accumulate_gradients(self, phase, real_img, real_c, gen_z, gamma, gain):
# G
if phase == 'G':
AdversarialLoss, RelativisticLogits = self.trainer.AccumulateGeneratorGradients(gen_z, real_img, real_c, gain, self.preprocessor)
training_stats.report('Loss/scores/fake', RelativisticLogits)
training_stats.report('Loss/signs/fake', RelativisticLogits.sign())
training_stats.report('Loss/G/loss', AdversarialLoss)
# D
if phase == 'D':
AdversarialLoss, RelativisticLogits, R1Penalty, R2Penalty = self.trainer.AccumulateDiscriminatorGradients(gen_z, real_img, real_c, gamma, gain, self.preprocessor)
training_stats.report('Loss/scores/real', RelativisticLogits)
training_stats.report('Loss/signs/real', RelativisticLogits.sign())
training_stats.report('Loss/D/loss', AdversarialLoss)
training_stats.report('Loss/r1_penalty', R1Penalty)
training_stats.report('Loss/r2_penalty', R2Penalty)
#---------------------------------------------------------------------------- |