Spaces:
Running
on
Zero
Running
on
Zero
Commit
Β·
1287e5e
1
Parent(s):
0e80ee6
Update app.py
Browse files
app.py
CHANGED
@@ -49,18 +49,20 @@ def generate_image(images, prompt, negative_prompt, preserve_face_structure, pro
|
|
49 |
faces = app.get(face)
|
50 |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
51 |
faceid_all_embeds.append(faceid_embed)
|
52 |
-
if(first_iteration):
|
53 |
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
54 |
first_iteration = False
|
55 |
|
56 |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
57 |
|
58 |
if(not preserve_face_structure):
|
|
|
59 |
image = ip_model.generate(
|
60 |
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding,
|
61 |
width=512, height=512, num_inference_steps=30
|
62 |
)
|
63 |
else:
|
|
|
64 |
image = ip_model_plus.generate(
|
65 |
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding,
|
66 |
face_image=face_image, shortcut=True, s_scale=1.5, width=512, height=512, num_inference_steps=30
|
|
|
49 |
faces = app.get(face)
|
50 |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
51 |
faceid_all_embeds.append(faceid_embed)
|
52 |
+
if(first_iteration and preserve_face_structure):
|
53 |
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
54 |
first_iteration = False
|
55 |
|
56 |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
|
57 |
|
58 |
if(not preserve_face_structure):
|
59 |
+
print("Generating normal")
|
60 |
image = ip_model.generate(
|
61 |
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding,
|
62 |
width=512, height=512, num_inference_steps=30
|
63 |
)
|
64 |
else:
|
65 |
+
print("Generating plus")
|
66 |
image = ip_model_plus.generate(
|
67 |
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding,
|
68 |
face_image=face_image, shortcut=True, s_scale=1.5, width=512, height=512, num_inference_steps=30
|