aa / app.py
muhammadshaheryar's picture
Update app.py
0046795 verified
# Continue with the rest of the code
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS
from transformers import pipeline
# Paste your data here
data = """
Enter your text data here. For example:
"""
# Split data into chunks for embedding
def chunk_text(text, chunk_size=500):
words = text.split()
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
return chunks
# Prepare the text chunks
text_chunks = chunk_text(data)
# Generate embeddings and index the data
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
vectorstore = FAISS.from_texts(text_chunks, embeddings)
# Load a simple LLM (Hugging Face model)
from transformers import pipeline
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
# Define a function to perform QA
def answer_question(question):
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
relevant_docs = retriever.get_relevant_documents(question)
context = " ".join([doc.page_content for doc in relevant_docs])
answer = qa_pipeline(question=question, context=context)
return answer["answer"]
# Ask a question
print("Paste the text and ask your question.")
question = input("Your question: ")
answer = answer_question(question)
print("Answer:", answer)