Fin render
Browse files- llm_conf.html +1337 -0
- llm_conf.qmd +5 -5
llm_conf.html
ADDED
@@ -0,0 +1,1337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en"><head>
|
3 |
+
<script src="llm_conf_files/libs/clipboard/clipboard.min.js"></script>
|
4 |
+
<script src="llm_conf_files/libs/quarto-html/tabby.min.js"></script>
|
5 |
+
<script src="llm_conf_files/libs/quarto-html/popper.min.js"></script>
|
6 |
+
<script src="llm_conf_files/libs/quarto-html/tippy.umd.min.js"></script>
|
7 |
+
<link href="llm_conf_files/libs/quarto-html/tippy.css" rel="stylesheet">
|
8 |
+
<link href="llm_conf_files/libs/quarto-html/light-border.css" rel="stylesheet">
|
9 |
+
<link href="llm_conf_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
|
10 |
+
<link href="llm_conf_files/libs/quarto-html/quarto-syntax-highlighting-dark.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
|
11 |
+
<meta name="generator" content="quarto-99.9.9">
|
12 |
+
|
13 |
+
<title>Scaling Model Training with More Compute, How Do They Do It?</title>
|
14 |
+
<meta name="apple-mobile-web-app-capable" content="yes">
|
15 |
+
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
|
16 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
|
17 |
+
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/reset.css">
|
18 |
+
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/reveal.css">
|
19 |
+
<style>
|
20 |
+
code{white-space: pre-wrap;}
|
21 |
+
span.smallcaps{font-variant: small-caps;}
|
22 |
+
div.columns{display: flex; gap: min(4vw, 1.5em);}
|
23 |
+
div.column{flex: auto; overflow-x: auto;}
|
24 |
+
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
|
25 |
+
ul.task-list{list-style: none;}
|
26 |
+
ul.task-list li input[type="checkbox"] {
|
27 |
+
width: 0.8em;
|
28 |
+
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
|
29 |
+
vertical-align: middle;
|
30 |
+
}
|
31 |
+
/* CSS for syntax highlighting */
|
32 |
+
pre > code.sourceCode { white-space: pre; position: relative; }
|
33 |
+
pre > code.sourceCode > span { line-height: 1.25; }
|
34 |
+
pre > code.sourceCode > span:empty { height: 1.2em; }
|
35 |
+
.sourceCode { overflow: visible; }
|
36 |
+
code.sourceCode > span { color: inherit; text-decoration: inherit; }
|
37 |
+
div.sourceCode { margin: 1em 0; }
|
38 |
+
pre.sourceCode { margin: 0; }
|
39 |
+
@media screen {
|
40 |
+
div.sourceCode { overflow: auto; }
|
41 |
+
}
|
42 |
+
@media print {
|
43 |
+
pre > code.sourceCode { white-space: pre-wrap; }
|
44 |
+
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
|
45 |
+
}
|
46 |
+
pre.numberSource code
|
47 |
+
{ counter-reset: source-line 0; }
|
48 |
+
pre.numberSource code > span
|
49 |
+
{ position: relative; left: -4em; counter-increment: source-line; }
|
50 |
+
pre.numberSource code > span > a:first-child::before
|
51 |
+
{ content: counter(source-line);
|
52 |
+
position: relative; left: -1em; text-align: right; vertical-align: baseline;
|
53 |
+
border: none; display: inline-block;
|
54 |
+
-webkit-touch-callout: none; -webkit-user-select: none;
|
55 |
+
-khtml-user-select: none; -moz-user-select: none;
|
56 |
+
-ms-user-select: none; user-select: none;
|
57 |
+
padding: 0 4px; width: 4em;
|
58 |
+
}
|
59 |
+
pre.numberSource { margin-left: 3em; padding-left: 4px; }
|
60 |
+
div.sourceCode
|
61 |
+
{ color: #f8f8f2; }
|
62 |
+
@media screen {
|
63 |
+
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
|
64 |
+
}
|
65 |
+
code span { color: #f8f8f2; } /* Normal */
|
66 |
+
code span.al { color: #f07178; background-color: #2a0f15; font-weight: bold; } /* Alert */
|
67 |
+
code span.an { color: #d4d0ab; } /* Annotation */
|
68 |
+
code span.at { color: #00e0e0; } /* Attribute */
|
69 |
+
code span.bn { color: #d4d0ab; } /* BaseN */
|
70 |
+
code span.bu { color: #abe338; } /* BuiltIn */
|
71 |
+
code span.cf { color: #ffa07a; font-weight: bold; } /* ControlFlow */
|
72 |
+
code span.ch { color: #abe338; } /* Char */
|
73 |
+
code span.cn { color: #ffd700; } /* Constant */
|
74 |
+
code span.co { color: #f8f8f2; font-style: italic; } /* Comment */
|
75 |
+
code span.cv { color: #ffd700; } /* CommentVar */
|
76 |
+
code span.do { color: #f8f8f2; } /* Documentation */
|
77 |
+
code span.dt { color: #ffa07a; } /* DataType */
|
78 |
+
code span.dv { color: #d4d0ab; } /* DecVal */
|
79 |
+
code span.er { color: #f07178; text-decoration: underline; } /* Error */
|
80 |
+
code span.ex { color: #00e0e0; font-weight: bold; } /* Extension */
|
81 |
+
code span.fl { color: #d4d0ab; } /* Float */
|
82 |
+
code span.fu { color: #ffa07a; } /* Function */
|
83 |
+
code span.im { color: #abe338; } /* Import */
|
84 |
+
code span.in { color: #d4d0ab; } /* Information */
|
85 |
+
code span.kw { color: #ffa07a; font-weight: bold; } /* Keyword */
|
86 |
+
code span.op { color: #ffa07a; } /* Operator */
|
87 |
+
code span.ot { color: #00e0e0; } /* Other */
|
88 |
+
code span.pp { color: #dcc6e0; } /* Preprocessor */
|
89 |
+
code span.re { color: #00e0e0; background-color: #f8f8f2; } /* RegionMarker */
|
90 |
+
code span.sc { color: #abe338; } /* SpecialChar */
|
91 |
+
code span.ss { color: #abe338; } /* SpecialString */
|
92 |
+
code span.st { color: #abe338; } /* String */
|
93 |
+
code span.va { color: #00e0e0; } /* Variable */
|
94 |
+
code span.vs { color: #abe338; } /* VerbatimString */
|
95 |
+
code span.wa { color: #dcc6e0; } /* Warning */
|
96 |
+
</style>
|
97 |
+
<link rel="stylesheet" href="llm_conf_files/libs/revealjs/dist/theme/quarto.css">
|
98 |
+
<link href="llm_conf_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
|
99 |
+
<link href="llm_conf_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
|
100 |
+
<link href="llm_conf_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
|
101 |
+
<link href="llm_conf_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
|
102 |
+
<style type="text/css">
|
103 |
+
|
104 |
+
.callout {
|
105 |
+
margin-top: 1em;
|
106 |
+
margin-bottom: 1em;
|
107 |
+
border-radius: .25rem;
|
108 |
+
}
|
109 |
+
|
110 |
+
.callout.callout-style-simple {
|
111 |
+
padding: 0em 0.5em;
|
112 |
+
border-left: solid #acacac .3rem;
|
113 |
+
border-right: solid 1px silver;
|
114 |
+
border-top: solid 1px silver;
|
115 |
+
border-bottom: solid 1px silver;
|
116 |
+
display: flex;
|
117 |
+
}
|
118 |
+
|
119 |
+
.callout.callout-style-default {
|
120 |
+
border-left: solid #acacac .3rem;
|
121 |
+
border-right: solid 1px silver;
|
122 |
+
border-top: solid 1px silver;
|
123 |
+
border-bottom: solid 1px silver;
|
124 |
+
}
|
125 |
+
|
126 |
+
.callout .callout-body-container {
|
127 |
+
flex-grow: 1;
|
128 |
+
}
|
129 |
+
|
130 |
+
.callout.callout-style-simple .callout-body {
|
131 |
+
font-size: 1rem;
|
132 |
+
font-weight: 400;
|
133 |
+
}
|
134 |
+
|
135 |
+
.callout.callout-style-default .callout-body {
|
136 |
+
font-size: 0.9rem;
|
137 |
+
font-weight: 400;
|
138 |
+
}
|
139 |
+
|
140 |
+
.callout.callout-titled.callout-style-simple .callout-body {
|
141 |
+
margin-top: 0.2em;
|
142 |
+
}
|
143 |
+
|
144 |
+
.callout:not(.callout-titled) .callout-body {
|
145 |
+
display: flex;
|
146 |
+
}
|
147 |
+
|
148 |
+
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
|
149 |
+
padding-left: 1.6em;
|
150 |
+
}
|
151 |
+
|
152 |
+
.callout.callout-titled .callout-header {
|
153 |
+
padding-top: 0.2em;
|
154 |
+
margin-bottom: -0.2em;
|
155 |
+
}
|
156 |
+
|
157 |
+
.callout.callout-titled .callout-title p {
|
158 |
+
margin-top: 0.5em;
|
159 |
+
margin-bottom: 0.5em;
|
160 |
+
}
|
161 |
+
|
162 |
+
.callout.callout-titled.callout-style-simple .callout-content p {
|
163 |
+
margin-top: 0;
|
164 |
+
}
|
165 |
+
|
166 |
+
.callout.callout-titled.callout-style-default .callout-content p {
|
167 |
+
margin-top: 0.7em;
|
168 |
+
}
|
169 |
+
|
170 |
+
.callout.callout-style-simple div.callout-title {
|
171 |
+
border-bottom: none;
|
172 |
+
font-size: .9rem;
|
173 |
+
font-weight: 600;
|
174 |
+
opacity: 75%;
|
175 |
+
}
|
176 |
+
|
177 |
+
.callout.callout-style-default div.callout-title {
|
178 |
+
border-bottom: none;
|
179 |
+
font-weight: 600;
|
180 |
+
opacity: 85%;
|
181 |
+
font-size: 0.9rem;
|
182 |
+
padding-left: 0.5em;
|
183 |
+
padding-right: 0.5em;
|
184 |
+
}
|
185 |
+
|
186 |
+
.callout.callout-style-default div.callout-content {
|
187 |
+
padding-left: 0.5em;
|
188 |
+
padding-right: 0.5em;
|
189 |
+
}
|
190 |
+
|
191 |
+
.callout.callout-style-simple .callout-icon::before {
|
192 |
+
height: 1rem;
|
193 |
+
width: 1rem;
|
194 |
+
display: inline-block;
|
195 |
+
content: "";
|
196 |
+
background-repeat: no-repeat;
|
197 |
+
background-size: 1rem 1rem;
|
198 |
+
}
|
199 |
+
|
200 |
+
.callout.callout-style-default .callout-icon::before {
|
201 |
+
height: 0.9rem;
|
202 |
+
width: 0.9rem;
|
203 |
+
display: inline-block;
|
204 |
+
content: "";
|
205 |
+
background-repeat: no-repeat;
|
206 |
+
background-size: 0.9rem 0.9rem;
|
207 |
+
}
|
208 |
+
|
209 |
+
.callout-title {
|
210 |
+
display: flex
|
211 |
+
}
|
212 |
+
|
213 |
+
.callout-icon::before {
|
214 |
+
margin-top: 1rem;
|
215 |
+
padding-right: .5rem;
|
216 |
+
}
|
217 |
+
|
218 |
+
.callout.no-icon::before {
|
219 |
+
display: none !important;
|
220 |
+
}
|
221 |
+
|
222 |
+
.callout.callout-titled .callout-body > .callout-content > :last-child {
|
223 |
+
padding-bottom: 0.5rem;
|
224 |
+
margin-bottom: 0;
|
225 |
+
}
|
226 |
+
|
227 |
+
.callout.callout-titled .callout-icon::before {
|
228 |
+
margin-top: .5rem;
|
229 |
+
padding-right: .5rem;
|
230 |
+
}
|
231 |
+
|
232 |
+
.callout:not(.callout-titled) .callout-icon::before {
|
233 |
+
margin-top: 1rem;
|
234 |
+
padding-right: .5rem;
|
235 |
+
}
|
236 |
+
|
237 |
+
/* Callout Types */
|
238 |
+
|
239 |
+
div.callout-note {
|
240 |
+
border-left-color: #4582ec !important;
|
241 |
+
}
|
242 |
+
|
243 |
+
div.callout-note .callout-icon::before {
|
244 |
+
background-image: url('');
|
245 |
+
}
|
246 |
+
|
247 |
+
div.callout-note.callout-style-default .callout-title {
|
248 |
+
background-color: #dae6fb
|
249 |
+
}
|
250 |
+
|
251 |
+
div.callout-important {
|
252 |
+
border-left-color: #d9534f !important;
|
253 |
+
}
|
254 |
+
|
255 |
+
div.callout-important .callout-icon::before {
|
256 |
+
background-image: url('');
|
257 |
+
}
|
258 |
+
|
259 |
+
div.callout-important.callout-style-default .callout-title {
|
260 |
+
background-color: #f7dddc
|
261 |
+
}
|
262 |
+
|
263 |
+
div.callout-warning {
|
264 |
+
border-left-color: #f0ad4e !important;
|
265 |
+
}
|
266 |
+
|
267 |
+
div.callout-warning .callout-icon::before {
|
268 |
+
background-image: url('');
|
269 |
+
}
|
270 |
+
|
271 |
+
div.callout-warning.callout-style-default .callout-title {
|
272 |
+
background-color: #fcefdc
|
273 |
+
}
|
274 |
+
|
275 |
+
div.callout-tip {
|
276 |
+
border-left-color: #02b875 !important;
|
277 |
+
}
|
278 |
+
|
279 |
+
div.callout-tip .callout-icon::before {
|
280 |
+
background-image: url('');
|
281 |
+
}
|
282 |
+
|
283 |
+
div.callout-tip.callout-style-default .callout-title {
|
284 |
+
background-color: #ccf1e3
|
285 |
+
}
|
286 |
+
|
287 |
+
div.callout-caution {
|
288 |
+
border-left-color: #fd7e14 !important;
|
289 |
+
}
|
290 |
+
|
291 |
+
div.callout-caution .callout-icon::before {
|
292 |
+
background-image: url('');
|
293 |
+
}
|
294 |
+
|
295 |
+
div.callout-caution.callout-style-default .callout-title {
|
296 |
+
background-color: #ffe5d0
|
297 |
+
}
|
298 |
+
|
299 |
+
</style>
|
300 |
+
<style type="text/css">
|
301 |
+
.reveal div.sourceCode {
|
302 |
+
margin: 0;
|
303 |
+
overflow: auto;
|
304 |
+
}
|
305 |
+
.reveal div.hanging-indent {
|
306 |
+
margin-left: 1em;
|
307 |
+
text-indent: -1em;
|
308 |
+
}
|
309 |
+
.reveal .slide:not(.center) {
|
310 |
+
height: 100%;
|
311 |
+
}
|
312 |
+
.reveal .slide.scrollable {
|
313 |
+
overflow-y: auto;
|
314 |
+
}
|
315 |
+
.reveal .footnotes {
|
316 |
+
height: 100%;
|
317 |
+
overflow-y: auto;
|
318 |
+
}
|
319 |
+
.reveal .slide .absolute {
|
320 |
+
position: absolute;
|
321 |
+
display: block;
|
322 |
+
}
|
323 |
+
.reveal .footnotes ol {
|
324 |
+
counter-reset: ol;
|
325 |
+
list-style-type: none;
|
326 |
+
margin-left: 0;
|
327 |
+
}
|
328 |
+
.reveal .footnotes ol li:before {
|
329 |
+
counter-increment: ol;
|
330 |
+
content: counter(ol) ". ";
|
331 |
+
}
|
332 |
+
.reveal .footnotes ol li > p:first-child {
|
333 |
+
display: inline-block;
|
334 |
+
}
|
335 |
+
.reveal .slide ul,
|
336 |
+
.reveal .slide ol {
|
337 |
+
margin-bottom: 0.5em;
|
338 |
+
}
|
339 |
+
.reveal .slide ul li,
|
340 |
+
.reveal .slide ol li {
|
341 |
+
margin-top: 0.4em;
|
342 |
+
margin-bottom: 0.2em;
|
343 |
+
}
|
344 |
+
.reveal .slide ul[role="tablist"] li {
|
345 |
+
margin-bottom: 0;
|
346 |
+
}
|
347 |
+
.reveal .slide ul li > *:first-child,
|
348 |
+
.reveal .slide ol li > *:first-child {
|
349 |
+
margin-block-start: 0;
|
350 |
+
}
|
351 |
+
.reveal .slide ul li > *:last-child,
|
352 |
+
.reveal .slide ol li > *:last-child {
|
353 |
+
margin-block-end: 0;
|
354 |
+
}
|
355 |
+
.reveal .slide .columns:nth-child(3) {
|
356 |
+
margin-block-start: 0.8em;
|
357 |
+
}
|
358 |
+
.reveal blockquote {
|
359 |
+
box-shadow: none;
|
360 |
+
}
|
361 |
+
.reveal .tippy-content>* {
|
362 |
+
margin-top: 0.2em;
|
363 |
+
margin-bottom: 0.7em;
|
364 |
+
}
|
365 |
+
.reveal .tippy-content>*:last-child {
|
366 |
+
margin-bottom: 0.2em;
|
367 |
+
}
|
368 |
+
.reveal .slide > img.stretch.quarto-figure-center,
|
369 |
+
.reveal .slide > img.r-stretch.quarto-figure-center {
|
370 |
+
display: block;
|
371 |
+
margin-left: auto;
|
372 |
+
margin-right: auto;
|
373 |
+
}
|
374 |
+
.reveal .slide > img.stretch.quarto-figure-left,
|
375 |
+
.reveal .slide > img.r-stretch.quarto-figure-left {
|
376 |
+
display: block;
|
377 |
+
margin-left: 0;
|
378 |
+
margin-right: auto;
|
379 |
+
}
|
380 |
+
.reveal .slide > img.stretch.quarto-figure-right,
|
381 |
+
.reveal .slide > img.r-stretch.quarto-figure-right {
|
382 |
+
display: block;
|
383 |
+
margin-left: auto;
|
384 |
+
margin-right: 0;
|
385 |
+
}
|
386 |
+
</style>
|
387 |
+
<script src="llm_conf_files/libs/quarto-diagram/mermaid.min.js"></script>
|
388 |
+
<script src="llm_conf_files/libs/quarto-diagram/mermaid-init.js"></script>
|
389 |
+
<link href="llm_conf_files/libs/quarto-diagram/mermaid.css" rel="stylesheet">
|
390 |
+
</head>
|
391 |
+
<body class="quarto-dark">
|
392 |
+
<div class="reveal">
|
393 |
+
<div class="slides">
|
394 |
+
|
395 |
+
<section id="title-slide" class="quarto-title-block center">
|
396 |
+
<h1 class="title">Scaling Model Training with More Compute, How Do They Do It?</h1>
|
397 |
+
|
398 |
+
<div class="quarto-title-authors">
|
399 |
+
</div>
|
400 |
+
|
401 |
+
</section>
|
402 |
+
<section id="who-am-i" class="slide level2">
|
403 |
+
<h2>Who am I?</h2>
|
404 |
+
<ul>
|
405 |
+
<li>Zachary Mueller</li>
|
406 |
+
<li>Technical Lead for the 🤗 Accelerate project</li>
|
407 |
+
<li>API design geek</li>
|
408 |
+
</ul>
|
409 |
+
</section>
|
410 |
+
<section id="understanding-gpu-usage" class="slide level2">
|
411 |
+
<h2>Understanding GPU Usage</h2>
|
412 |
+
<ul>
|
413 |
+
<li>We can somewhat estimate the memory usage in vanilla full-fine-tuning of models</li>
|
414 |
+
<li>Requires certain assumptions (that I’ll be covering):
|
415 |
+
<ul>
|
416 |
+
<li>Adam optimizer</li>
|
417 |
+
<li>Batch size of 1</li>
|
418 |
+
</ul></li>
|
419 |
+
</ul>
|
420 |
+
</section>
|
421 |
+
<section id="understanding-gpu-usage-1" class="slide level2">
|
422 |
+
<h2>Understanding GPU Usage</h2>
|
423 |
+
<p>General estimate (<code>bert-base-cased</code>, 108M params):</p>
|
424 |
+
<ul>
|
425 |
+
<li>Each parameter is 4 bytes</li>
|
426 |
+
<li>Backward ~= 2x the model size</li>
|
427 |
+
<li>The optimizer step ~= 4x the model size (1x model, 1x gradients, 2x optimizer):</li>
|
428 |
+
</ul>
|
429 |
+
<div style="font-size: 50%;background-color: rgba(0,0,0,.1);">
|
430 |
+
<table>
|
431 |
+
<thead>
|
432 |
+
<tr class="header">
|
433 |
+
<th>dtype</th>
|
434 |
+
<th style="text-align: left;">Model</th>
|
435 |
+
<th style="text-align: center;">Gradients</th>
|
436 |
+
<th style="text-align: center;">Backward pass</th>
|
437 |
+
<th style="text-align: center;">Optimizer step</th>
|
438 |
+
<th style="text-align: center;">Highest</th>
|
439 |
+
</tr>
|
440 |
+
</thead>
|
441 |
+
<tbody>
|
442 |
+
<tr class="odd">
|
443 |
+
<td>float32</td>
|
444 |
+
<td style="text-align: left;">413.18 MB</td>
|
445 |
+
<td style="text-align: center;">413.18 MB</td>
|
446 |
+
<td style="text-align: center;">826.36 MB</td>
|
447 |
+
<td style="text-align: center;">1.61 GB</td>
|
448 |
+
<td style="text-align: center;">1.61 GB</td>
|
449 |
+
</tr>
|
450 |
+
<tr class="even">
|
451 |
+
<td>float16</td>
|
452 |
+
<td style="text-align: left;">413.18 MB*</td>
|
453 |
+
<td style="text-align: center;">619.77 MB</td>
|
454 |
+
<td style="text-align: center;">826.36 MB</td>
|
455 |
+
<td style="text-align: center;">826.36 MB</td>
|
456 |
+
<td style="text-align: center;">826.36 MB</td>
|
457 |
+
</tr>
|
458 |
+
</tbody>
|
459 |
+
</table>
|
460 |
+
<p>*All estimations were based off the <a href="https://huggingface.co/spaces/hf-accelerate/model-memory-usage">Model Estimator Tool</a></p>
|
461 |
+
</div>
|
462 |
+
</section>
|
463 |
+
<section id="understanding-gpu-usage-2" class="slide level2">
|
464 |
+
<h2>Understanding GPU Usage</h2>
|
465 |
+
<p>This works fine for small models, we have cards with anywhere from 12-24GB of GPU memory (on the GPU-poor side).</p>
|
466 |
+
<p>But what happens as we scale?</p>
|
467 |
+
<p>Here’s <code>llama-3-8B</code> (8.03B parameters)</p>
|
468 |
+
<div style="font-size: 50%;background-color: rgba(0,0,0,.1);">
|
469 |
+
<table>
|
470 |
+
<thead>
|
471 |
+
<tr class="header">
|
472 |
+
<th>dtype</th>
|
473 |
+
<th style="text-align: left;">Model</th>
|
474 |
+
<th style="text-align: center;">Gradients</th>
|
475 |
+
<th style="text-align: center;">Backward pass</th>
|
476 |
+
<th style="text-align: center;">Optimizer step</th>
|
477 |
+
<th style="text-align: center;">Highest</th>
|
478 |
+
</tr>
|
479 |
+
</thead>
|
480 |
+
<tbody>
|
481 |
+
<tr class="odd">
|
482 |
+
<td>float32</td>
|
483 |
+
<td style="text-align: left;">28.21 GB</td>
|
484 |
+
<td style="text-align: center;">28.21 GB</td>
|
485 |
+
<td style="text-align: center;">56.43 GB</td>
|
486 |
+
<td style="text-align: center;">112.84 GB</td>
|
487 |
+
<td style="text-align: center;">112.84 GB</td>
|
488 |
+
</tr>
|
489 |
+
<tr class="even">
|
490 |
+
<td>float16</td>
|
491 |
+
<td style="text-align: left;">28.21 GB*</td>
|
492 |
+
<td style="text-align: center;">42.32 GB</td>
|
493 |
+
<td style="text-align: center;">56.43 GB</td>
|
494 |
+
<td style="text-align: center;">56.43 GB</td>
|
495 |
+
<td style="text-align: center;">56.43 GB</td>
|
496 |
+
</tr>
|
497 |
+
</tbody>
|
498 |
+
</table>
|
499 |
+
</div>
|
500 |
+
<p>Well, <em>I</em> don’t have 56GB of GPU memory in a single card, let alone 112GB.</p>
|
501 |
+
<p>What can we do?</p>
|
502 |
+
</section>
|
503 |
+
<section>
|
504 |
+
<section id="distributed-training" class="title-slide slide level1 center">
|
505 |
+
<h1>Distributed Training</h1>
|
506 |
+
|
507 |
+
</section>
|
508 |
+
<section id="kinds-of-training" class="slide level2">
|
509 |
+
<h2>Kinds of Training</h2>
|
510 |
+
<ul>
|
511 |
+
<li>Single GPU:
|
512 |
+
<ul>
|
513 |
+
<li>No distributed techniques at play</li>
|
514 |
+
</ul></li>
|
515 |
+
<li>DDP:
|
516 |
+
<ul>
|
517 |
+
<li>A full copy of the model exists on each device, but data is chunked between each GPU</li>
|
518 |
+
</ul></li>
|
519 |
+
<li>FSDP & DeepSpeed:
|
520 |
+
<ul>
|
521 |
+
<li>Split chunks of the model and optimizer states across GPUs, allowing for training bigger models on smaller (multiple) GPUs</li>
|
522 |
+
</ul></li>
|
523 |
+
</ul>
|
524 |
+
</section></section>
|
525 |
+
<section>
|
526 |
+
<section id="fully-sharded-data-parallelism" class="title-slide slide level1 center">
|
527 |
+
<h1>Fully Sharded Data Parallelism</h1>
|
528 |
+
|
529 |
+
</section>
|
530 |
+
<section id="fully-sharded-data-parallelism-1" class="slide level2">
|
531 |
+
<h2>Fully Sharded Data Parallelism</h2>
|
532 |
+
|
533 |
+
<img data-src="fsdp.png" id="fig-539a35d47e664c97a50115a146a7f1bd-1" class="r-stretch quarto-figure-center"><aside class="notes">
|
534 |
+
<ul>
|
535 |
+
<li>Take the model and split it across <code>n</code> GPUs</li>
|
536 |
+
<li>Each GPU computes the shard’s gradients</li>
|
537 |
+
<li>At the end, all gradients are synchronized and the final full model gradient is calculated</li>
|
538 |
+
<li>The backward pass can then be performed</li>
|
539 |
+
</ul>
|
540 |
+
<style type="text/css">
|
541 |
+
span.MJX_Assistive_MathML {
|
542 |
+
position:absolute!important;
|
543 |
+
clip: rect(1px, 1px, 1px, 1px);
|
544 |
+
padding: 1px 0 0 0!important;
|
545 |
+
border: 0!important;
|
546 |
+
height: 1px!important;
|
547 |
+
width: 1px!important;
|
548 |
+
overflow: hidden!important;
|
549 |
+
display:block!important;
|
550 |
+
}</style></aside>
|
551 |
+
</section>
|
552 |
+
<section id="fsdp-getting-parameter-specific" class="slide level2">
|
553 |
+
<h2>FSDP: Getting parameter specific</h2>
|
554 |
+
<ul>
|
555 |
+
<li>Different parameters can dicatate how much memory is needed for total GPU training across multiple GPUs</li>
|
556 |
+
<li>These include how model weights are sharded, gradients, and more.</li>
|
557 |
+
<li>I’ll cover some important ones I needed when doing a Full-Fine-Tune of Llama-3-8B <em>without PEFT</em> on 2x4090’s</li>
|
558 |
+
</ul>
|
559 |
+
</section>
|
560 |
+
<section id="sharding_strategy" class="slide level2">
|
561 |
+
<h2><code>sharding_strategy</code></h2>
|
562 |
+
<ul>
|
563 |
+
<li>Dictates the level of divving resources to perform
|
564 |
+
<ul>
|
565 |
+
<li><code>FULL_SHARD</code>: Includes optimizer states, gradients, and parameters</li>
|
566 |
+
<li><code>SHARD_GRAD_OP</code>: Includes optimizer states and gradients</li>
|
567 |
+
<li><code>NO_SHARD</code>: Normal DDP</li>
|
568 |
+
<li><code>HYBRID_SHARD</code>: Includes optimizer states, gradients, and parameters but each node has the full model</li>
|
569 |
+
</ul>
|
570 |
+
<aside class="notes">
|
571 |
+
<pre><code>FULL_SHARD:
|
572 |
+
Parameters, Gradients, Optimizer States: All are sharded.
|
573 |
+
Parameters Handling: Unshard before forward pass, reshard after forward pass, unshard before backward pass, reshard after backward pass.
|
574 |
+
Gradients Handling: Synchronize and shard after backward pass.
|
575 |
+
Optimizer States: Updated locally per rank.</code></pre>
|
576 |
+
<p>SHARD_GRAD_OP: Gradients and Optimizer States: Sharded during computation. Parameters: Unshard before forward pass, remain unsharded during forward pass, reshard after backward pass. Inside no_sync(): Parameters are not resharded after backward computation. Optimizer States: Updated locally per rank.</p>
|
577 |
+
<p>NO_SHARD: Parameters, Gradients, Optimizer States: Not sharded, replicated across ranks. Gradients Handling: Synchronized via all-reduce after backward pass. Optimizer States: Updated locally per rank.</p>
|
578 |
+
<p>HYBRID_SHARD: Parameters, Gradients, Optimizer States: Combines FULL_SHARD within a node and replicates parameters across nodes. Communication: Expensive operations like all-gathers and reduce-scatters are limited to within a node, enhancing performance for medium-sized models.</p>
|
579 |
+
<style type="text/css">
|
580 |
+
span.MJX_Assistive_MathML {
|
581 |
+
position:absolute!important;
|
582 |
+
clip: rect(1px, 1px, 1px, 1px);
|
583 |
+
padding: 1px 0 0 0!important;
|
584 |
+
border: 0!important;
|
585 |
+
height: 1px!important;
|
586 |
+
width: 1px!important;
|
587 |
+
overflow: hidden!important;
|
588 |
+
display:block!important;
|
589 |
+
}</style></aside></li>
|
590 |
+
</ul>
|
591 |
+
</section>
|
592 |
+
<section id="auto_wrap_policy" class="slide level2">
|
593 |
+
<h2><code>auto_wrap_policy</code>:</h2>
|
594 |
+
<ul>
|
595 |
+
<li>How the model should be split</li>
|
596 |
+
<li>Can be either <code>TRANSFORMER_BASED_WRAP</code> or <code>SIZE_BASED_WRAP</code></li>
|
597 |
+
<li><code>TRANSFORMER</code>/<code>fsdp_transformers_layer_cls_to_wrap</code>:
|
598 |
+
<ul>
|
599 |
+
<li>Need to declare the layer</li>
|
600 |
+
<li>Generally <code>transformers</code> has good defaults</li>
|
601 |
+
</ul></li>
|
602 |
+
<li><code>SIZE</code>/<code>fsdp_min_num_param</code>:
|
603 |
+
<ul>
|
604 |
+
<li>Number of total parameters in a shard</li>
|
605 |
+
</ul></li>
|
606 |
+
</ul>
|
607 |
+
</section>
|
608 |
+
<section id="offload_params" class="slide level2">
|
609 |
+
<h2><code>offload_params</code>:</h2>
|
610 |
+
<ul>
|
611 |
+
<li>Offloads the parameters and gradients to the CPU if they can’t fit into memory</li>
|
612 |
+
<li>Allows you to train much larger models locally, but will be much slower</li>
|
613 |
+
</ul>
|
614 |
+
<blockquote>
|
615 |
+
<p>Case: FFT of Llama-3-8B with <code>fsdp_offload_params</code> on 2x4090 GPUs was 72hrs, vs ~an hour or two when using 1xH100</p>
|
616 |
+
</blockquote>
|
617 |
+
</section>
|
618 |
+
<section id="cpu_ram_efficient_loading-and-sync_module_states" class="slide level2">
|
619 |
+
<h2><code>cpu_ram_efficient_loading</code> and <code>sync_module_states</code></h2>
|
620 |
+
<ul>
|
621 |
+
<li>Uses the idea behind big model inference/the <code>meta</code> device to load in the model to the GPU in a low-ram scenario</li>
|
622 |
+
<li>Rather than needing <code>model_size</code> * <code>n_gpus</code> RAM, we can load the model on a single node and then send the weights directly to each shard when the time is right via <code>sync_module_states</code></li>
|
623 |
+
</ul>
|
624 |
+
</section></section>
|
625 |
+
<section>
|
626 |
+
<section id="tying-this-to-accelerate" class="title-slide slide level1 center">
|
627 |
+
<h1>Tying this to 🤗 Accelerate</h1>
|
628 |
+
|
629 |
+
</section>
|
630 |
+
<section id="tying-this-to-accelerate-1" class="slide level2">
|
631 |
+
<h2>Tying this to 🤗 Accelerate</h2>
|
632 |
+
<ul>
|
633 |
+
<li>So far we’ve covered the theory, but how do we put it into practice</li>
|
634 |
+
<li>By using a library that’s at the heart of the entire open-source ecosystem</li>
|
635 |
+
</ul>
|
636 |
+
<div style="font-size: 60%;padding-left:10%;padding-top:0%;">
|
637 |
+
<ul>
|
638 |
+
<li>Nearly all of 🤗</li>
|
639 |
+
<li><code>axolotl</code></li>
|
640 |
+
<li><code>fastai</code></li>
|
641 |
+
<li><code>FastChat</code></li>
|
642 |
+
<li><code>lucidrains</code></li>
|
643 |
+
<li><code>kornia</code></li>
|
644 |
+
</ul>
|
645 |
+
</div>
|
646 |
+
<p>Are you using it and you don’t even know?</p>
|
647 |
+
</section>
|
648 |
+
<section id="what-is-accelerate" class="slide level2">
|
649 |
+
<h2>What is 🤗 Accelerate?</h2>
|
650 |
+
<div class="cell" data-reveal="true" data-fig-height="6">
|
651 |
+
<div class="cell-output-display">
|
652 |
+
<div>
|
653 |
+
<div>
|
654 |
+
<pre class="mermaid mermaid-js">graph LR
|
655 |
+
A(("🤗 Accelerate#32;"))
|
656 |
+
A --> B["CLI Interface#32;"]
|
657 |
+
A --> C["Training Library#32;"]
|
658 |
+
A --> D["Big Model<br>Inference#32;"]
|
659 |
+
</pre>
|
660 |
+
</div>
|
661 |
+
</div>
|
662 |
+
</div>
|
663 |
+
</div>
|
664 |
+
</section>
|
665 |
+
<section id="a-cli-interface" class="slide level2">
|
666 |
+
<h2>A CLI Interface</h2>
|
667 |
+
<ul>
|
668 |
+
<li><code>accelerate config</code>
|
669 |
+
<ul>
|
670 |
+
<li>Configure the environment</li>
|
671 |
+
</ul></li>
|
672 |
+
<li><code>accelerate estimate-memory</code>
|
673 |
+
<ul>
|
674 |
+
<li>How to guess vRAM requirements</li>
|
675 |
+
</ul></li>
|
676 |
+
<li><code>accelerate launch</code>
|
677 |
+
<ul>
|
678 |
+
<li>How to run your script</li>
|
679 |
+
</ul></li>
|
680 |
+
</ul>
|
681 |
+
</section>
|
682 |
+
<section id="launching-distributed-training-is-hard" class="slide level2">
|
683 |
+
<h2>Launching distributed training is hard</h2>
|
684 |
+
<ul>
|
685 |
+
<li><div class="sourceCode" id="cb2"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb2-1"><a href="#cb2-1"></a><span class="ex">python</span> script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
|
686 |
+
<li><div class="sourceCode" id="cb3"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb3-1"><a href="#cb3-1"></a><span class="ex">torchrun</span> <span class="at">--nnodes</span><span class="op">=</span>1 <span class="at">--nproc_per_node</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
|
687 |
+
<li><div class="sourceCode" id="cb4"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1"></a><span class="ex">deepspeed</span> <span class="at">--num_gpus</span><span class="op">=</span>2 script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div></li>
|
688 |
+
</ul>
|
689 |
+
<p>How can we make this better?</p>
|
690 |
+
</section>
|
691 |
+
<section id="accelerate-launch" class="slide level2">
|
692 |
+
<h2><code>accelerate launch</code></h2>
|
693 |
+
<div class="sourceCode" id="cb5"><pre class="sourceCode numberSource bash number-lines code-with-copy"><code class="sourceCode bash"><span id="cb5-1"><a href="#cb5-1"></a><span class="ex">accelerate</span> launch script.py</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
694 |
+
</section>
|
695 |
+
<section id="accelerate-config" class="slide level2">
|
696 |
+
<h2><code>accelerate config</code></h2>
|
697 |
+
<ul>
|
698 |
+
<li>Rely on <code>config.yaml</code> files</li>
|
699 |
+
<li>Choose to either running <code>accelerate config</code> or write your own:</li>
|
700 |
+
</ul>
|
701 |
+
<div class="columns" style="font-size: 50%;padding-left:10%;background-color: rgba(0,0,0,.1);">
|
702 |
+
<div class="column" style="width:40%;">
|
703 |
+
<div class="code-with-filename">
|
704 |
+
<div class="code-with-filename-file">
|
705 |
+
<pre><strong>ddp_config.yaml</strong></pre>
|
706 |
+
</div>
|
707 |
+
<div class="sourceCode" id="cb6" data-filename="ddp_config.yaml"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb6-1"><a href="#cb6-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span>
|
708 |
+
<span id="cb6-2"><a href="#cb6-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> MULTI_GPU</span></span>
|
709 |
+
<span id="cb6-3"><a href="#cb6-3"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span>
|
710 |
+
<span id="cb6-4"><a href="#cb6-4"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span>
|
711 |
+
<span id="cb6-5"><a href="#cb6-5"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span>
|
712 |
+
<span id="cb6-6"><a href="#cb6-6"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
713 |
+
</div>
|
714 |
+
</div><div class="column" style="width:40%;">
|
715 |
+
<div class="code-with-filename">
|
716 |
+
<div class="code-with-filename-file">
|
717 |
+
<pre><strong>fsdp_config.yaml</strong></pre>
|
718 |
+
</div>
|
719 |
+
<div class="sourceCode" id="cb7" data-filename="fsdp_config.yaml"><pre class="sourceCode numberSource yaml number-lines code-with-copy"><code class="sourceCode yaml"><span id="cb7-1"><a href="#cb7-1"></a><span class="fu">compute_environment</span><span class="kw">:</span><span class="at"> LOCAL_MACHINE</span></span>
|
720 |
+
<span id="cb7-2"><a href="#cb7-2"></a><span class="fu">distributed_type</span><span class="kw">:</span><span class="at"> FSDP</span></span>
|
721 |
+
<span id="cb7-3"><a href="#cb7-3"></a><span class="fu">fsdp_config</span><span class="kw">:</span></span>
|
722 |
+
<span id="cb7-4"><a href="#cb7-4"></a><span class="at"> </span><span class="fu">fsdp_auto_wrap_policy</span><span class="kw">:</span><span class="at"> TRANSFORMER_BASED_WRAP</span></span>
|
723 |
+
<span id="cb7-5"><a href="#cb7-5"></a><span class="at"> </span><span class="fu">fsdp_backward_prefetch</span><span class="kw">:</span><span class="at"> BACKWARD_PRE</span></span>
|
724 |
+
<span id="cb7-6"><a href="#cb7-6"></a><span class="at"> </span><span class="fu">fsdp_cpu_ram_efficient_loading</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span>
|
725 |
+
<span id="cb7-7"><a href="#cb7-7"></a><span class="at"> </span><span class="fu">fsdp_forward_prefetch</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
|
726 |
+
<span id="cb7-8"><a href="#cb7-8"></a><span class="at"> </span><span class="fu">fsdp_offload_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
|
727 |
+
<span id="cb7-9"><a href="#cb7-9"></a><span class="at"> </span><span class="fu">fsdp_sharding_strategy</span><span class="kw">:</span><span class="at"> FULL_SHARD</span></span>
|
728 |
+
<span id="cb7-10"><a href="#cb7-10"></a><span class="at"> </span><span class="fu">fsdp_state_dict_type</span><span class="kw">:</span><span class="at"> SHARDED_STATE_DICT</span></span>
|
729 |
+
<span id="cb7-11"><a href="#cb7-11"></a><span class="at"> </span><span class="fu">fsdp_sync_module_states</span><span class="kw">:</span><span class="at"> </span><span class="ch">true</span></span>
|
730 |
+
<span id="cb7-12"><a href="#cb7-12"></a><span class="at"> </span><span class="fu">fsdp_use_orig_params</span><span class="kw">:</span><span class="at"> </span><span class="ch">false</span></span>
|
731 |
+
<span id="cb7-13"><a href="#cb7-13"></a><span class="fu">main_training_function</span><span class="kw">:</span><span class="at"> main</span></span>
|
732 |
+
<span id="cb7-14"><a href="#cb7-14"></a><span class="fu">mixed_precision</span><span class="kw">:</span><span class="at"> bf16</span></span>
|
733 |
+
<span id="cb7-15"><a href="#cb7-15"></a><span class="fu">num_machines</span><span class="kw">:</span><span class="at"> </span><span class="dv">1</span></span>
|
734 |
+
<span id="cb7-16"><a href="#cb7-16"></a><span class="fu">num_processes</span><span class="kw">:</span><span class="at"> </span><span class="dv">8</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
735 |
+
</div>
|
736 |
+
</div>
|
737 |
+
</div>
|
738 |
+
</section></section>
|
739 |
+
<section>
|
740 |
+
<section id="a-training-library" class="title-slide slide level1 center">
|
741 |
+
<h1>A Training Library</h1>
|
742 |
+
|
743 |
+
</section>
|
744 |
+
<section id="a-training-library-the-code" class="slide level2">
|
745 |
+
<h2>A Training Library: The Code</h2>
|
746 |
+
<div class="columns" style="font-size: 50%;">
|
747 |
+
<div class="column">
|
748 |
+
<p><br><br><br></p>
|
749 |
+
<div class="sourceCode" id="cb8" data-code-line-numbers="5-6,9"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1"></a><span class="co"># For alignment purposes</span></span>
|
750 |
+
<span id="cb8-2"><a href="#cb8-2"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
|
751 |
+
<span id="cb8-3"><a href="#cb8-3"></a> optimizer.zero_grad()</span>
|
752 |
+
<span id="cb8-4"><a href="#cb8-4"></a> inputs, targets <span class="op">=</span> batch</span>
|
753 |
+
<span id="cb8-5"><a href="#cb8-5"></a> inputs <span class="op">=</span> inputs.to(device)</span>
|
754 |
+
<span id="cb8-6"><a href="#cb8-6"></a> targets <span class="op">=</span> targets.to(device)</span>
|
755 |
+
<span id="cb8-7"><a href="#cb8-7"></a> outputs <span class="op">=</span> model(inputs)</span>
|
756 |
+
<span id="cb8-8"><a href="#cb8-8"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
|
757 |
+
<span id="cb8-9"><a href="#cb8-9"></a> loss.backward()</span>
|
758 |
+
<span id="cb8-10"><a href="#cb8-10"></a> optimizer.step()</span>
|
759 |
+
<span id="cb8-11"><a href="#cb8-11"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
760 |
+
</div><div class="column">
|
761 |
+
<div class="sourceCode" id="cb9" data-code-line-numbers="1-7,12-13,16"><pre class="sourceCode numberSource python number-lines code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1"></a><span class="im">from</span> accelerate <span class="im">import</span> Accelerator</span>
|
762 |
+
<span id="cb9-2"><a href="#cb9-2"></a>accelerator <span class="op">=</span> Accelerator()</span>
|
763 |
+
<span id="cb9-3"><a href="#cb9-3"></a>dataloader, model, optimizer scheduler <span class="op">=</span> (</span>
|
764 |
+
<span id="cb9-4"><a href="#cb9-4"></a> accelerator.prepare(</span>
|
765 |
+
<span id="cb9-5"><a href="#cb9-5"></a> dataloader, model, optimizer, scheduler</span>
|
766 |
+
<span id="cb9-6"><a href="#cb9-6"></a> )</span>
|
767 |
+
<span id="cb9-7"><a href="#cb9-7"></a>)</span>
|
768 |
+
<span id="cb9-8"><a href="#cb9-8"></a></span>
|
769 |
+
<span id="cb9-9"><a href="#cb9-9"></a><span class="cf">for</span> batch <span class="kw">in</span> dataloader:</span>
|
770 |
+
<span id="cb9-10"><a href="#cb9-10"></a> optimizer.zero_grad()</span>
|
771 |
+
<span id="cb9-11"><a href="#cb9-11"></a> inputs, targets <span class="op">=</span> batch</span>
|
772 |
+
<span id="cb9-12"><a href="#cb9-12"></a> <span class="co"># inputs = inputs.to(device)</span></span>
|
773 |
+
<span id="cb9-13"><a href="#cb9-13"></a> <span class="co"># targets = targets.to(device)</span></span>
|
774 |
+
<span id="cb9-14"><a href="#cb9-14"></a> outputs <span class="op">=</span> model(inputs)</span>
|
775 |
+
<span id="cb9-15"><a href="#cb9-15"></a> loss <span class="op">=</span> loss_function(outputs, targets)</span>
|
776 |
+
<span id="cb9-16"><a href="#cb9-16"></a> accelerator.backward(loss) <span class="co"># loss.backward()</span></span>
|
777 |
+
<span id="cb9-17"><a href="#cb9-17"></a> optimizer.step()</span>
|
778 |
+
<span id="cb9-18"><a href="#cb9-18"></a> scheduler.step()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
|
779 |
+
</div>
|
780 |
+
</div>
|
781 |
+
</section>
|
782 |
+
<section id="a-training-library-how-scaling-works" class="slide level2">
|
783 |
+
<h2>A Training Library: How Scaling Works</h2>
|
784 |
+
<ul>
|
785 |
+
<li>Accelerate’s DataLoaders and schedulers work off of a sharding mindset</li>
|
786 |
+
<li>Rather than repeating the same data across <code>n</code> nodes, we instead split it</li>
|
787 |
+
<li>Speeds up training linearly</li>
|
788 |
+
<li>Given a batch size of 16 on a single GPU, to recreate this across 8 GPUs you would use a batch size of 2</li>
|
789 |
+
<li>This also means the scheduler will be stepped <code>n</code> GPUs at a time per “global step”</li>
|
790 |
+
</ul>
|
791 |
+
</section>
|
792 |
+
<section id="a-training-library-mixed-precision" class="slide level2">
|
793 |
+
<h2>A Training Library: Mixed Precision</h2>
|
794 |
+
<ul>
|
795 |
+
<li>This may be a bit different than your “normal” idea of mixed precision.</li>
|
796 |
+
<li>We do <strong>not</strong> convert the model weights to BF16/FP16</li>
|
797 |
+
<li>Instead we <strong>wrap the forward pass</strong> with <code>autocast</code> to convert the gradients automatically</li>
|
798 |
+
<li>This preserves the original precision of the weights, which leads to stable training and better fine-tuning later on.</li>
|
799 |
+
<li><strong>If you use <code>.bf16()</code> weights, you are STUCK in bf16 perminantly</strong></li>
|
800 |
+
</ul>
|
801 |
+
</section>
|
802 |
+
<section id="a-training-library-mixed-precision-1" class="slide level2">
|
803 |
+
<h2>A Training Library: Mixed Precision</h2>
|
804 |
+
<ul>
|
805 |
+
<li>Let’s tie that back up to the model estimator with neat tools like NVIDIA’s TransformerEngine</li>
|
806 |
+
</ul>
|
807 |
+
<div style="font-size: 60%;background-color: rgba(0,0,0,.1);">
|
808 |
+
<table style="width:100%;">
|
809 |
+
<colgroup>
|
810 |
+
<col style="width: 14%">
|
811 |
+
<col style="width: 14%">
|
812 |
+
<col style="width: 14%">
|
813 |
+
<col style="width: 14%">
|
814 |
+
<col style="width: 14%">
|
815 |
+
<col style="width: 14%">
|
816 |
+
<col style="width: 14%">
|
817 |
+
</colgroup>
|
818 |
+
<thead>
|
819 |
+
<tr class="header">
|
820 |
+
<th>Optimization Level</th>
|
821 |
+
<th>Computation (GEMM)</th>
|
822 |
+
<th>Comm</th>
|
823 |
+
<th>Weight</th>
|
824 |
+
<th>Master Weight</th>
|
825 |
+
<th>Weight Gradient</th>
|
826 |
+
<th>Optimizer States</th>
|
827 |
+
</tr>
|
828 |
+
</thead>
|
829 |
+
<tbody>
|
830 |
+
<tr class="odd">
|
831 |
+
<td>FP16 AMP</td>
|
832 |
+
<td>FP16</td>
|
833 |
+
<td>FP32</td>
|
834 |
+
<td>FP32</td>
|
835 |
+
<td>N/A</td>
|
836 |
+
<td>FP32</td>
|
837 |
+
<td>FP32+FP32</td>
|
838 |
+
</tr>
|
839 |
+
<tr class="even">
|
840 |
+
<td>Nvidia TE</td>
|
841 |
+
<td>FP8</td>
|
842 |
+
<td>FP32</td>
|
843 |
+
<td>FP32</td>
|
844 |
+
<td>N/A</td>
|
845 |
+
<td>FP32</td>
|
846 |
+
<td>FP32+FP32</td>
|
847 |
+
</tr>
|
848 |
+
<tr class="odd">
|
849 |
+
<td>MS-AMP O1</td>
|
850 |
+
<td>FP8</td>
|
851 |
+
<td>FP8</td>
|
852 |
+
<td>FP16</td>
|
853 |
+
<td>N/A</td>
|
854 |
+
<td>FP8</td>
|
855 |
+
<td>FP32+FP32</td>
|
856 |
+
</tr>
|
857 |
+
<tr class="even">
|
858 |
+
<td>MS-AMP O2</td>
|
859 |
+
<td>FP8</td>
|
860 |
+
<td>FP8</td>
|
861 |
+
<td>FP16</td>
|
862 |
+
<td>N/A</td>
|
863 |
+
<td>FP8</td>
|
864 |
+
<td>FP8+FP16</td>
|
865 |
+
</tr>
|
866 |
+
<tr class="odd">
|
867 |
+
<td>MS-AMP O3</td>
|
868 |
+
<td>FP8</td>
|
869 |
+
<td>FP8</td>
|
870 |
+
<td>FP8</td>
|
871 |
+
<td>FP16</td>
|
872 |
+
<td>FP8</td>
|
873 |
+
<td>FP8+FP16</td>
|
874 |
+
</tr>
|
875 |
+
</tbody>
|
876 |
+
</table>
|
877 |
+
</div>
|
878 |
+
<aside class="notes">
|
879 |
+
<p>What is actually happening: * Linear Layers and other certain compatible layers are wrapped in a special version that allows for FP8 computation * The general forward pass is wrapped around BF16 * This means that the most memory saved is done during the gradients of the model, <em>not</em> the model itself. * With tools like <code>MS-AMP</code> we can convert more chunks into lower precision, but again like before stable training occurs when the models weights are in full precision and the backprop happens in full precision too.</p>
|
880 |
+
<style type="text/css">
|
881 |
+
span.MJX_Assistive_MathML {
|
882 |
+
position:absolute!important;
|
883 |
+
clip: rect(1px, 1px, 1px, 1px);
|
884 |
+
padding: 1px 0 0 0!important;
|
885 |
+
border: 0!important;
|
886 |
+
height: 1px!important;
|
887 |
+
width: 1px!important;
|
888 |
+
overflow: hidden!important;
|
889 |
+
display:block!important;
|
890 |
+
}</style></aside>
|
891 |
+
</section>
|
892 |
+
<section id="deepspeed-vs-fully-sharded-data-parallelism" class="slide level2">
|
893 |
+
<h2>DeepSpeed vs Fully Sharded Data Parallelism</h2>
|
894 |
+
<ul>
|
895 |
+
<li>Extremely similar, however mostly used different naming conventions for items and slight tweaks in the implementation</li>
|
896 |
+
</ul>
|
897 |
+
<div style="font-size: 50%;background-color: rgba(0,0,0,.1);">
|
898 |
+
<table style="width:100%;">
|
899 |
+
<colgroup>
|
900 |
+
<col style="width: 16%">
|
901 |
+
<col style="width: 16%">
|
902 |
+
<col style="width: 16%">
|
903 |
+
<col style="width: 16%">
|
904 |
+
<col style="width: 16%">
|
905 |
+
<col style="width: 16%">
|
906 |
+
</colgroup>
|
907 |
+
<thead>
|
908 |
+
<tr class="header">
|
909 |
+
<th>Framework</th>
|
910 |
+
<th>Model Loading (<code>torch_dtype</code>)</th>
|
911 |
+
<th>Mixed Precision</th>
|
912 |
+
<th>Preparation (Local)</th>
|
913 |
+
<th>Training</th>
|
914 |
+
<th>Optimizer (Local)</th>
|
915 |
+
</tr>
|
916 |
+
</thead>
|
917 |
+
<tbody>
|
918 |
+
<tr class="odd">
|
919 |
+
<td>FSDP</td>
|
920 |
+
<td>bf16</td>
|
921 |
+
<td>default (none)</td>
|
922 |
+
<td>bf16</td>
|
923 |
+
<td>bf16</td>
|
924 |
+
<td>bf16</td>
|
925 |
+
</tr>
|
926 |
+
<tr class="even">
|
927 |
+
<td>FSDP</td>
|
928 |
+
<td>bf16</td>
|
929 |
+
<td>bf16</td>
|
930 |
+
<td>fp32</td>
|
931 |
+
<td>bf16</td>
|
932 |
+
<td>fp32</td>
|
933 |
+
</tr>
|
934 |
+
<tr class="odd">
|
935 |
+
<td>DeepSpeed</td>
|
936 |
+
<td>bf16</td>
|
937 |
+
<td>bf16</td>
|
938 |
+
<td>fp32</td>
|
939 |
+
<td>bf16</td>
|
940 |
+
<td>fp32</td>
|
941 |
+
</tr>
|
942 |
+
</tbody>
|
943 |
+
</table>
|
944 |
+
</div>
|
945 |
+
<p>To learn more, check out the <a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">documentation</a> or join my office hours</p>
|
946 |
+
</section>
|
947 |
+
<section id="key-takeaways" class="slide level2">
|
948 |
+
<h2>Key Takeaways:</h2>
|
949 |
+
<ul>
|
950 |
+
<li>You can scale out training with <code>accelerate</code>, FSDP, and DeepSpeed across multiple GPUs to train bigger models</li>
|
951 |
+
<li>Techniques like <code>FP8</code> can help speed up training some and reduce computational overhead</li>
|
952 |
+
<li>Comes at a cost of end-precision and locking model weights for futher fine-tunes if not careful</li>
|
953 |
+
</ul>
|
954 |
+
</section>
|
955 |
+
<section id="some-handy-resources" class="slide level2">
|
956 |
+
<h2>Some Handy Resources</h2>
|
957 |
+
<ul>
|
958 |
+
<li><a href="https://hf.co/docs/accelerate">🤗 Accelerate documentation</a></li>
|
959 |
+
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/launch">Launching distributed code</a></li>
|
960 |
+
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/notebook">Distributed code and Jupyter Notebooks</a></li>
|
961 |
+
<li><a href="https://huggingface.co/docs/accelerate/basic_tutorials/migration">Migrating to 🤗 Accelerate easily</a></li>
|
962 |
+
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/big_modeling">Big Model Inference tutorial</a></li>
|
963 |
+
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/deepspeed">DeepSpeed and 🤗 Accelerate</a></li>
|
964 |
+
<li><a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp">Fully Sharded Data Parallelism and 🤗 Accelerate</a></li>
|
965 |
+
<li><a href="https://huggingface.co/docs/accelerate/concept_guides/fsdp_and_deepspeed">FSDP vs DeepSpeed In-Depth</a></li>
|
966 |
+
</ul>
|
967 |
+
<div class="footer footer-default">
|
968 |
+
|
969 |
+
</div>
|
970 |
+
</section></section>
|
971 |
+
</div>
|
972 |
+
</div>
|
973 |
+
|
974 |
+
<script>window.backupDefine = window.define; window.define = undefined;</script>
|
975 |
+
<script src="llm_conf_files/libs/revealjs/dist/reveal.js"></script>
|
976 |
+
<!-- reveal.js plugins -->
|
977 |
+
<script src="llm_conf_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
|
978 |
+
<script src="llm_conf_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
|
979 |
+
<script src="llm_conf_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
|
980 |
+
<script src="llm_conf_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
|
981 |
+
<script src="llm_conf_files/libs/revealjs/plugin/quarto-support/support.js"></script>
|
982 |
+
|
983 |
+
|
984 |
+
<script src="llm_conf_files/libs/revealjs/plugin/notes/notes.js"></script>
|
985 |
+
<script src="llm_conf_files/libs/revealjs/plugin/search/search.js"></script>
|
986 |
+
<script src="llm_conf_files/libs/revealjs/plugin/zoom/zoom.js"></script>
|
987 |
+
<script src="llm_conf_files/libs/revealjs/plugin/math/math.js"></script>
|
988 |
+
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
|
989 |
+
|
990 |
+
<script>
|
991 |
+
|
992 |
+
// Full list of configuration options available at:
|
993 |
+
// https://revealjs.com/config/
|
994 |
+
Reveal.initialize({
|
995 |
+
'controlsAuto': true,
|
996 |
+
'previewLinksAuto': false,
|
997 |
+
'pdfSeparateFragments': false,
|
998 |
+
'autoAnimateEasing': "ease",
|
999 |
+
'autoAnimateDuration': 1,
|
1000 |
+
'autoAnimateUnmatched': true,
|
1001 |
+
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
|
1002 |
+
'smaller': false,
|
1003 |
+
|
1004 |
+
// Display controls in the bottom right corner
|
1005 |
+
controls: false,
|
1006 |
+
|
1007 |
+
// Help the user learn the controls by providing hints, for example by
|
1008 |
+
// bouncing the down arrow when they first encounter a vertical slide
|
1009 |
+
controlsTutorial: false,
|
1010 |
+
|
1011 |
+
// Determines where controls appear, "edges" or "bottom-right"
|
1012 |
+
controlsLayout: 'edges',
|
1013 |
+
|
1014 |
+
// Visibility rule for backwards navigation arrows; "faded", "hidden"
|
1015 |
+
// or "visible"
|
1016 |
+
controlsBackArrows: 'faded',
|
1017 |
+
|
1018 |
+
// Display a presentation progress bar
|
1019 |
+
progress: true,
|
1020 |
+
|
1021 |
+
// Display the page number of the current slide
|
1022 |
+
slideNumber: false,
|
1023 |
+
|
1024 |
+
// 'all', 'print', or 'speaker'
|
1025 |
+
showSlideNumber: 'all',
|
1026 |
+
|
1027 |
+
// Add the current slide number to the URL hash so that reloading the
|
1028 |
+
// page/copying the URL will return you to the same slide
|
1029 |
+
hash: true,
|
1030 |
+
|
1031 |
+
// Start with 1 for the hash rather than 0
|
1032 |
+
hashOneBasedIndex: false,
|
1033 |
+
|
1034 |
+
// Flags if we should monitor the hash and change slides accordingly
|
1035 |
+
respondToHashChanges: true,
|
1036 |
+
|
1037 |
+
// Push each slide change to the browser history
|
1038 |
+
history: true,
|
1039 |
+
|
1040 |
+
// Enable keyboard shortcuts for navigation
|
1041 |
+
keyboard: true,
|
1042 |
+
|
1043 |
+
// Enable the slide overview mode
|
1044 |
+
overview: true,
|
1045 |
+
|
1046 |
+
// Disables the default reveal.js slide layout (scaling and centering)
|
1047 |
+
// so that you can use custom CSS layout
|
1048 |
+
disableLayout: false,
|
1049 |
+
|
1050 |
+
// Vertical centering of slides
|
1051 |
+
center: false,
|
1052 |
+
|
1053 |
+
// Enables touch navigation on devices with touch input
|
1054 |
+
touch: true,
|
1055 |
+
|
1056 |
+
// Loop the presentation
|
1057 |
+
loop: false,
|
1058 |
+
|
1059 |
+
// Change the presentation direction to be RTL
|
1060 |
+
rtl: false,
|
1061 |
+
|
1062 |
+
// see https://revealjs.com/vertical-slides/#navigation-mode
|
1063 |
+
navigationMode: 'linear',
|
1064 |
+
|
1065 |
+
// Randomizes the order of slides each time the presentation loads
|
1066 |
+
shuffle: false,
|
1067 |
+
|
1068 |
+
// Turns fragments on and off globally
|
1069 |
+
fragments: true,
|
1070 |
+
|
1071 |
+
// Flags whether to include the current fragment in the URL,
|
1072 |
+
// so that reloading brings you to the same fragment position
|
1073 |
+
fragmentInURL: false,
|
1074 |
+
|
1075 |
+
// Flags if the presentation is running in an embedded mode,
|
1076 |
+
// i.e. contained within a limited portion of the screen
|
1077 |
+
embedded: false,
|
1078 |
+
|
1079 |
+
// Flags if we should show a help overlay when the questionmark
|
1080 |
+
// key is pressed
|
1081 |
+
help: true,
|
1082 |
+
|
1083 |
+
// Flags if it should be possible to pause the presentation (blackout)
|
1084 |
+
pause: true,
|
1085 |
+
|
1086 |
+
// Flags if speaker notes should be visible to all viewers
|
1087 |
+
showNotes: false,
|
1088 |
+
|
1089 |
+
// Global override for autoplaying embedded media (null/true/false)
|
1090 |
+
autoPlayMedia: null,
|
1091 |
+
|
1092 |
+
// Global override for preloading lazy-loaded iframes (null/true/false)
|
1093 |
+
preloadIframes: null,
|
1094 |
+
|
1095 |
+
// Number of milliseconds between automatically proceeding to the
|
1096 |
+
// next slide, disabled when set to 0, this value can be overwritten
|
1097 |
+
// by using a data-autoslide attribute on your slides
|
1098 |
+
autoSlide: 0,
|
1099 |
+
|
1100 |
+
// Stop auto-sliding after user input
|
1101 |
+
autoSlideStoppable: true,
|
1102 |
+
|
1103 |
+
// Use this method for navigation when auto-sliding
|
1104 |
+
autoSlideMethod: null,
|
1105 |
+
|
1106 |
+
// Specify the average time in seconds that you think you will spend
|
1107 |
+
// presenting each slide. This is used to show a pacing timer in the
|
1108 |
+
// speaker view
|
1109 |
+
defaultTiming: null,
|
1110 |
+
|
1111 |
+
// Enable slide navigation via mouse wheel
|
1112 |
+
mouseWheel: false,
|
1113 |
+
|
1114 |
+
// The display mode that will be used to show slides
|
1115 |
+
display: 'block',
|
1116 |
+
|
1117 |
+
// Hide cursor if inactive
|
1118 |
+
hideInactiveCursor: true,
|
1119 |
+
|
1120 |
+
// Time before the cursor is hidden (in ms)
|
1121 |
+
hideCursorTime: 5000,
|
1122 |
+
|
1123 |
+
// Opens links in an iframe preview overlay
|
1124 |
+
previewLinks: false,
|
1125 |
+
|
1126 |
+
// Transition style (none/fade/slide/convex/concave/zoom)
|
1127 |
+
transition: 'none',
|
1128 |
+
|
1129 |
+
// Transition speed (default/fast/slow)
|
1130 |
+
transitionSpeed: 'default',
|
1131 |
+
|
1132 |
+
// Transition style for full page slide backgrounds
|
1133 |
+
// (none/fade/slide/convex/concave/zoom)
|
1134 |
+
backgroundTransition: 'none',
|
1135 |
+
|
1136 |
+
// Number of slides away from the current that are visible
|
1137 |
+
viewDistance: 3,
|
1138 |
+
|
1139 |
+
// Number of slides away from the current that are visible on mobile
|
1140 |
+
// devices. It is advisable to set this to a lower number than
|
1141 |
+
// viewDistance in order to save resources.
|
1142 |
+
mobileViewDistance: 2,
|
1143 |
+
|
1144 |
+
// The "normal" size of the presentation, aspect ratio will be preserved
|
1145 |
+
// when the presentation is scaled to fit different resolutions. Can be
|
1146 |
+
// specified using percentage units.
|
1147 |
+
width: 1050,
|
1148 |
+
|
1149 |
+
height: 700,
|
1150 |
+
|
1151 |
+
// Factor of the display size that should remain empty around the content
|
1152 |
+
margin: 0.1,
|
1153 |
+
|
1154 |
+
math: {
|
1155 |
+
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
|
1156 |
+
config: 'TeX-AMS_HTML-full',
|
1157 |
+
tex2jax: {
|
1158 |
+
inlineMath: [['\\(','\\)']],
|
1159 |
+
displayMath: [['\\[','\\]']],
|
1160 |
+
balanceBraces: true,
|
1161 |
+
processEscapes: false,
|
1162 |
+
processRefs: true,
|
1163 |
+
processEnvironments: true,
|
1164 |
+
preview: 'TeX',
|
1165 |
+
skipTags: ['script','noscript','style','textarea','pre','code'],
|
1166 |
+
ignoreClass: 'tex2jax_ignore',
|
1167 |
+
processClass: 'tex2jax_process'
|
1168 |
+
},
|
1169 |
+
},
|
1170 |
+
|
1171 |
+
// reveal.js plugins
|
1172 |
+
plugins: [QuartoLineHighlight, PdfExport, RevealMenu, QuartoSupport,
|
1173 |
+
|
1174 |
+
RevealMath,
|
1175 |
+
RevealNotes,
|
1176 |
+
RevealSearch,
|
1177 |
+
RevealZoom
|
1178 |
+
]
|
1179 |
+
});
|
1180 |
+
</script>
|
1181 |
+
<script id="quarto-html-after-body" type="application/javascript">
|
1182 |
+
window.document.addEventListener("DOMContentLoaded", function (event) {
|
1183 |
+
const toggleBodyColorMode = (bsSheetEl) => {
|
1184 |
+
const mode = bsSheetEl.getAttribute("data-mode");
|
1185 |
+
const bodyEl = window.document.querySelector("body");
|
1186 |
+
if (mode === "dark") {
|
1187 |
+
bodyEl.classList.add("quarto-dark");
|
1188 |
+
bodyEl.classList.remove("quarto-light");
|
1189 |
+
} else {
|
1190 |
+
bodyEl.classList.add("quarto-light");
|
1191 |
+
bodyEl.classList.remove("quarto-dark");
|
1192 |
+
}
|
1193 |
+
}
|
1194 |
+
const toggleBodyColorPrimary = () => {
|
1195 |
+
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
|
1196 |
+
if (bsSheetEl) {
|
1197 |
+
toggleBodyColorMode(bsSheetEl);
|
1198 |
+
}
|
1199 |
+
}
|
1200 |
+
toggleBodyColorPrimary();
|
1201 |
+
const tabsets = window.document.querySelectorAll(".panel-tabset-tabby")
|
1202 |
+
tabsets.forEach(function(tabset) {
|
1203 |
+
const tabby = new Tabby('#' + tabset.id);
|
1204 |
+
});
|
1205 |
+
const isCodeAnnotation = (el) => {
|
1206 |
+
for (const clz of el.classList) {
|
1207 |
+
if (clz.startsWith('code-annotation-')) {
|
1208 |
+
return true;
|
1209 |
+
}
|
1210 |
+
}
|
1211 |
+
return false;
|
1212 |
+
}
|
1213 |
+
const clipboard = new window.ClipboardJS('.code-copy-button', {
|
1214 |
+
text: function(trigger) {
|
1215 |
+
const codeEl = trigger.previousElementSibling.cloneNode(true);
|
1216 |
+
for (const childEl of codeEl.children) {
|
1217 |
+
if (isCodeAnnotation(childEl)) {
|
1218 |
+
childEl.remove();
|
1219 |
+
}
|
1220 |
+
}
|
1221 |
+
return codeEl.innerText;
|
1222 |
+
}
|
1223 |
+
});
|
1224 |
+
clipboard.on('success', function(e) {
|
1225 |
+
// button target
|
1226 |
+
const button = e.trigger;
|
1227 |
+
// don't keep focus
|
1228 |
+
button.blur();
|
1229 |
+
// flash "checked"
|
1230 |
+
button.classList.add('code-copy-button-checked');
|
1231 |
+
var currentTitle = button.getAttribute("title");
|
1232 |
+
button.setAttribute("title", "Copied!");
|
1233 |
+
let tooltip;
|
1234 |
+
if (window.bootstrap) {
|
1235 |
+
button.setAttribute("data-bs-toggle", "tooltip");
|
1236 |
+
button.setAttribute("data-bs-placement", "left");
|
1237 |
+
button.setAttribute("data-bs-title", "Copied!");
|
1238 |
+
tooltip = new bootstrap.Tooltip(button,
|
1239 |
+
{ trigger: "manual",
|
1240 |
+
customClass: "code-copy-button-tooltip",
|
1241 |
+
offset: [0, -8]});
|
1242 |
+
tooltip.show();
|
1243 |
+
}
|
1244 |
+
setTimeout(function() {
|
1245 |
+
if (tooltip) {
|
1246 |
+
tooltip.hide();
|
1247 |
+
button.removeAttribute("data-bs-title");
|
1248 |
+
button.removeAttribute("data-bs-toggle");
|
1249 |
+
button.removeAttribute("data-bs-placement");
|
1250 |
+
}
|
1251 |
+
button.setAttribute("title", currentTitle);
|
1252 |
+
button.classList.remove('code-copy-button-checked');
|
1253 |
+
}, 1000);
|
1254 |
+
// clear code selection
|
1255 |
+
e.clearSelection();
|
1256 |
+
});
|
1257 |
+
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
|
1258 |
+
const config = {
|
1259 |
+
allowHTML: true,
|
1260 |
+
maxWidth: 500,
|
1261 |
+
delay: 100,
|
1262 |
+
arrow: false,
|
1263 |
+
appendTo: function(el) {
|
1264 |
+
return el.closest('section.slide') || el.parentElement;
|
1265 |
+
},
|
1266 |
+
interactive: true,
|
1267 |
+
interactiveBorder: 10,
|
1268 |
+
theme: 'light-border',
|
1269 |
+
placement: 'bottom-start',
|
1270 |
+
};
|
1271 |
+
if (contentFn) {
|
1272 |
+
config.content = contentFn;
|
1273 |
+
}
|
1274 |
+
if (onTriggerFn) {
|
1275 |
+
config.onTrigger = onTriggerFn;
|
1276 |
+
}
|
1277 |
+
if (onUntriggerFn) {
|
1278 |
+
config.onUntrigger = onUntriggerFn;
|
1279 |
+
}
|
1280 |
+
config['offset'] = [0,0];
|
1281 |
+
config['maxWidth'] = 700;
|
1282 |
+
window.tippy(el, config);
|
1283 |
+
}
|
1284 |
+
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
|
1285 |
+
for (var i=0; i<noterefs.length; i++) {
|
1286 |
+
const ref = noterefs[i];
|
1287 |
+
tippyHover(ref, function() {
|
1288 |
+
// use id or data attribute instead here
|
1289 |
+
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
|
1290 |
+
try { href = new URL(href).hash; } catch {}
|
1291 |
+
const id = href.replace(/^#\/?/, "");
|
1292 |
+
const note = window.document.getElementById(id);
|
1293 |
+
return note.innerHTML;
|
1294 |
+
});
|
1295 |
+
}
|
1296 |
+
const findCites = (el) => {
|
1297 |
+
const parentEl = el.parentElement;
|
1298 |
+
if (parentEl) {
|
1299 |
+
const cites = parentEl.dataset.cites;
|
1300 |
+
if (cites) {
|
1301 |
+
return {
|
1302 |
+
el,
|
1303 |
+
cites: cites.split(' ')
|
1304 |
+
};
|
1305 |
+
} else {
|
1306 |
+
return findCites(el.parentElement)
|
1307 |
+
}
|
1308 |
+
} else {
|
1309 |
+
return undefined;
|
1310 |
+
}
|
1311 |
+
};
|
1312 |
+
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
|
1313 |
+
for (var i=0; i<bibliorefs.length; i++) {
|
1314 |
+
const ref = bibliorefs[i];
|
1315 |
+
const citeInfo = findCites(ref);
|
1316 |
+
if (citeInfo) {
|
1317 |
+
tippyHover(citeInfo.el, function() {
|
1318 |
+
var popup = window.document.createElement('div');
|
1319 |
+
citeInfo.cites.forEach(function(cite) {
|
1320 |
+
var citeDiv = window.document.createElement('div');
|
1321 |
+
citeDiv.classList.add('hanging-indent');
|
1322 |
+
citeDiv.classList.add('csl-entry');
|
1323 |
+
var biblioDiv = window.document.getElementById('ref-' + cite);
|
1324 |
+
if (biblioDiv) {
|
1325 |
+
citeDiv.innerHTML = biblioDiv.innerHTML;
|
1326 |
+
}
|
1327 |
+
popup.appendChild(citeDiv);
|
1328 |
+
});
|
1329 |
+
return popup.innerHTML;
|
1330 |
+
});
|
1331 |
+
}
|
1332 |
+
}
|
1333 |
+
});
|
1334 |
+
</script>
|
1335 |
+
|
1336 |
+
|
1337 |
+
</body></html>
|
llm_conf.qmd
CHANGED
@@ -28,7 +28,7 @@ General estimate (`bert-base-cased`, 108M params):
|
|
28 |
- Backward ~= 2x the model size
|
29 |
- The optimizer step ~= 4x the model size (1x model, 1x gradients, 2x optimizer):
|
30 |
|
31 |
-
::: {style="font-size: 50%;"}
|
32 |
| dtype | Model | Gradients | Backward pass | Optimizer step | Highest |
|
33 |
|---------|:-----|:------:|:------:|:------:|:------:|
|
34 |
| float32 | 413.18 MB | 413.18 MB | 826.36 MB | 1.61 GB | 1.61 GB |
|
@@ -45,7 +45,7 @@ But what happens as we scale?
|
|
45 |
|
46 |
Here's `llama-3-8B` (8.03B parameters)
|
47 |
|
48 |
-
::: {style="font-size: 50%;"}
|
49 |
| dtype | Model | Gradients | Backward pass | Optimizer step | Highest |
|
50 |
|---------|:-----|:------:|:------:|:------:|:------:|
|
51 |
| float32 | 28.21 GB | 28.21 GB | 56.43 GB | 112.84 GB | 112.84 GB |
|
@@ -202,7 +202,7 @@ accelerate launch script.py
|
|
202 |
* Rely on `config.yaml` files
|
203 |
* Choose to either running `accelerate config` or write your own:
|
204 |
|
205 |
-
:::: {.columns style="font-size: 50%;padding-left:10%;"}
|
206 |
::: {.column width="40%"}
|
207 |
```{.yaml filename=ddp_config.yaml}
|
208 |
compute_environment: LOCAL_MACHINE
|
@@ -302,7 +302,7 @@ for batch in dataloader:
|
|
302 |
|
303 |
* Let's tie that back up to the model estimator with neat tools like NVIDIA's TransformerEngine
|
304 |
|
305 |
-
::: {style="font-size: 60%;"}
|
306 |
| Optimization Level | Computation (GEMM) | Comm | Weight | Master Weight | Weight Gradient | Optimizer States |
|
307 |
| -- | -- | -- | -- | -- | -- | -- |
|
308 |
| FP16 AMP | FP16 | FP32 | FP32 | N/A | FP32 | FP32+FP32 |
|
@@ -326,7 +326,7 @@ What is actually happening:
|
|
326 |
|
327 |
* Extremely similar, however mostly used different naming conventions for items and slight tweaks in the implementation
|
328 |
|
329 |
-
::: {style="font-size: 50%;"}
|
330 |
Framework | Model Loading (`torch_dtype`) | Mixed Precision | Preparation (Local) | Training | Optimizer (Local)
|
331 |
--|--|--|--|--|--
|
332 |
FSDP | bf16 | default (none) | bf16 | bf16 | bf16
|
|
|
28 |
- Backward ~= 2x the model size
|
29 |
- The optimizer step ~= 4x the model size (1x model, 1x gradients, 2x optimizer):
|
30 |
|
31 |
+
::: {style="font-size: 50%;background-color: rgba(0,0,0,.1);"}
|
32 |
| dtype | Model | Gradients | Backward pass | Optimizer step | Highest |
|
33 |
|---------|:-----|:------:|:------:|:------:|:------:|
|
34 |
| float32 | 413.18 MB | 413.18 MB | 826.36 MB | 1.61 GB | 1.61 GB |
|
|
|
45 |
|
46 |
Here's `llama-3-8B` (8.03B parameters)
|
47 |
|
48 |
+
::: {style="font-size: 50%;background-color: rgba(0,0,0,.1);"}
|
49 |
| dtype | Model | Gradients | Backward pass | Optimizer step | Highest |
|
50 |
|---------|:-----|:------:|:------:|:------:|:------:|
|
51 |
| float32 | 28.21 GB | 28.21 GB | 56.43 GB | 112.84 GB | 112.84 GB |
|
|
|
202 |
* Rely on `config.yaml` files
|
203 |
* Choose to either running `accelerate config` or write your own:
|
204 |
|
205 |
+
:::: {.columns style="font-size: 50%;padding-left:10%;background-color: rgba(0,0,0,.1);"}
|
206 |
::: {.column width="40%"}
|
207 |
```{.yaml filename=ddp_config.yaml}
|
208 |
compute_environment: LOCAL_MACHINE
|
|
|
302 |
|
303 |
* Let's tie that back up to the model estimator with neat tools like NVIDIA's TransformerEngine
|
304 |
|
305 |
+
::: {style="font-size: 60%;background-color: rgba(0,0,0,.1);"}
|
306 |
| Optimization Level | Computation (GEMM) | Comm | Weight | Master Weight | Weight Gradient | Optimizer States |
|
307 |
| -- | -- | -- | -- | -- | -- | -- |
|
308 |
| FP16 AMP | FP16 | FP32 | FP32 | N/A | FP32 | FP32+FP32 |
|
|
|
326 |
|
327 |
* Extremely similar, however mostly used different naming conventions for items and slight tweaks in the implementation
|
328 |
|
329 |
+
::: {style="font-size: 50%;background-color: rgba(0,0,0,.1);"}
|
330 |
Framework | Model Loading (`torch_dtype`) | Mixed Precision | Preparation (Local) | Training | Optimizer (Local)
|
331 |
--|--|--|--|--|--
|
332 |
FSDP | bf16 | default (none) | bf16 | bf16 | bf16
|