Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Muennighoff
commited on
Commit
Β·
b986a91
1
Parent(s):
3ae8f23
Revert
Browse files
app.py
CHANGED
@@ -121,6 +121,20 @@ TASK_LIST_RETRIEVAL = [
|
|
121 |
"TRECCOVID",
|
122 |
]
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
125 |
"CQADupstackAndroidRetrieval",
|
126 |
"CQADupstackEnglishRetrieval",
|
@@ -735,6 +749,7 @@ DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIF
|
|
735 |
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
736 |
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
|
737 |
DATA_CLUSTERING_GERMAN = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
|
|
|
738 |
DATA_STS = get_mteb_data(["STS"])
|
739 |
|
740 |
# Exact, add all non-nan integer values for every dataset
|
@@ -810,7 +825,7 @@ with block:
|
|
810 |
with gr.TabItem("Danish"):
|
811 |
with gr.Row():
|
812 |
gr.Markdown("""
|
813 |
-
**Bitext Mining Danish Leaderboard
|
814 |
|
815 |
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
816 |
- **Languages:** Danish & Bornholmsk (Danish Dialect)
|
@@ -1072,26 +1087,51 @@ with block:
|
|
1072 |
get_mteb_data, inputs=[task_reranking], outputs=data_reranking
|
1073 |
)
|
1074 |
with gr.TabItem("Retrieval"):
|
1075 |
-
with gr.
|
1076 |
-
gr.
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
|
1088 |
-
|
1089 |
-
|
1090 |
-
|
1091 |
-
|
1092 |
-
|
1093 |
-
|
1094 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1095 |
with gr.TabItem("STS"):
|
1096 |
with gr.TabItem("English"):
|
1097 |
with gr.Row():
|
|
|
121 |
"TRECCOVID",
|
122 |
]
|
123 |
|
124 |
+
TASK_LIST_RETRIEVAL_PL = [
|
125 |
+
"ArguAna-PL",
|
126 |
+
"DBPedia-PL",
|
127 |
+
"FiQA2018-PL",
|
128 |
+
"HotpotQA-PL",
|
129 |
+
"MSMARCO-PL",
|
130 |
+
"NFCorpus-PL",
|
131 |
+
"NQ-PL",
|
132 |
+
"Quora-PL",
|
133 |
+
"SCIDOCS-PL",
|
134 |
+
"SciFact-PL",
|
135 |
+
"TRECCOVID-PL",
|
136 |
+
]
|
137 |
+
|
138 |
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
139 |
"CQADupstackAndroidRetrieval",
|
140 |
"CQADupstackEnglishRetrieval",
|
|
|
749 |
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
750 |
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
|
751 |
DATA_CLUSTERING_GERMAN = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
|
752 |
+
#DATA_RETRIEVAL_PL = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_PL)
|
753 |
DATA_STS = get_mteb_data(["STS"])
|
754 |
|
755 |
# Exact, add all non-nan integer values for every dataset
|
|
|
825 |
with gr.TabItem("Danish"):
|
826 |
with gr.Row():
|
827 |
gr.Markdown("""
|
828 |
+
**Bitext Mining Danish Leaderboard ππ©π°**
|
829 |
|
830 |
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
831 |
- **Languages:** Danish & Bornholmsk (Danish Dialect)
|
|
|
1087 |
get_mteb_data, inputs=[task_reranking], outputs=data_reranking
|
1088 |
)
|
1089 |
with gr.TabItem("Retrieval"):
|
1090 |
+
with gr.TabItem("English"):
|
1091 |
+
with gr.Row():
|
1092 |
+
gr.Markdown("""
|
1093 |
+
**Retrieval Leaderboard π**
|
1094 |
+
|
1095 |
+
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
1096 |
+
- **Languages:** English
|
1097 |
+
""")
|
1098 |
+
with gr.Row():
|
1099 |
+
data_retrieval = gr.components.Dataframe(
|
1100 |
+
DATA_RETRIEVAL,
|
1101 |
+
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
1102 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
|
1103 |
+
type="pandas",
|
1104 |
+
)
|
1105 |
+
with gr.Row():
|
1106 |
+
data_run = gr.Button("Refresh")
|
1107 |
+
task_retrieval = gr.Variable(value=["Retrieval"])
|
1108 |
+
data_run.click(
|
1109 |
+
get_mteb_data, inputs=[task_retrieval], outputs=data_retrieval
|
1110 |
+
)
|
1111 |
+
'''
|
1112 |
+
with gr.TabItem("Polish"):
|
1113 |
+
with gr.Row():
|
1114 |
+
gr.Markdown("""
|
1115 |
+
**Retrieval Polish Leaderboard ππ΅π±**
|
1116 |
+
|
1117 |
+
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
1118 |
+
- **Languages:** Polish
|
1119 |
+
- **Credits:** [Konrad Wojtasik](https://github.com/kwojtasi) & [BEIR-PL](https://arxiv.org/abs/2305.19840)
|
1120 |
+
""")
|
1121 |
+
with gr.Row():
|
1122 |
+
data_retrieval_pl = gr.components.Dataframe(
|
1123 |
+
DATA_RETRIEVAL_PL,
|
1124 |
+
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
1125 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_PL.columns) * 2,
|
1126 |
+
type="pandas",
|
1127 |
+
)
|
1128 |
+
with gr.Row():
|
1129 |
+
data_run = gr.Button("Refresh")
|
1130 |
+
task_retrieval_pl = gr.Variable(value=["Retrieval"])
|
1131 |
+
data_run.click(
|
1132 |
+
get_mteb_data, inputs=[task_retrieval_pl], outputs=data_retrieval_pl
|
1133 |
+
)
|
1134 |
+
'''
|
1135 |
with gr.TabItem("STS"):
|
1136 |
with gr.TabItem("English"):
|
1137 |
with gr.Row():
|