Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
KennethEnevoldsen
commited on
Removed debug code in refresh.py intended to only update one board (#20)
Browse files* Removed debug code in refresh.py intended to only update one board
I additionally removed types from docstring (some were lying) and added types where I could guess them to make it easier to debug the code in the future.
Also added a minor description to the readme for ease of navigation.
* Added import for type annotations
* Ensure that the reset_index happens inplace
* Avoid adding duplicates in refresh.py
- README.md +20 -0
- refresh.py +334 -133
README.md
CHANGED
@@ -12,3 +12,23 @@ tags:
|
|
12 |
startup_duration_timeout: 1h
|
13 |
fullWidth: true
|
14 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
startup_duration_timeout: 1h
|
13 |
fullWidth: true
|
14 |
---
|
15 |
+
|
16 |
+
## The MTEB Leaderboard repository
|
17 |
+
|
18 |
+
This repository contains the code for pushing and updating the MTEB leaderboard daily.
|
19 |
+
|
20 |
+
| Relevant Links | Decription |
|
21 |
+
|------------------------------------------|------------------------------|
|
22 |
+
| [mteb](https://github.com/embeddings-benchmark/mteb) | The implementation of the benchmark. Here you e.g. find the code to run your model on the benchmark. |
|
23 |
+
| [leaderboard](https://huggingface.co/spaces/mteb/leaderboard) | The leaderboard itself, here you can view results of model run on MTEB. |
|
24 |
+
| [results](https://github.com/embeddings-benchmark/results) | The results of MTEB is stored here. Though you can publish them to the leaderboard [adding](https://github.com/embeddings-benchmark/mteb/blob/main/docs/adding_a_model.md) the result to your model card. |
|
25 |
+
|
26 |
+
## Developer setup
|
27 |
+
|
28 |
+
To setup the repository:
|
29 |
+
|
30 |
+
```
|
31 |
+
git clone {repo_url}
|
32 |
+
# potentially create virtual environment using python 3.9
|
33 |
+
pip install -r requirements.txt
|
34 |
+
```
|
refresh.py
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
-
from
|
|
|
2 |
import json
|
3 |
import os
|
4 |
import re
|
|
|
|
|
5 |
|
|
|
6 |
from datasets import load_dataset
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from huggingface_hub.repocard import metadata_load
|
9 |
-
import pandas as pd
|
10 |
from tqdm.autonotebook import tqdm
|
11 |
|
|
|
12 |
from utils.model_size import get_model_parameters_memory
|
13 |
-
from envs import LEADERBOARD_CONFIG, MODEL_META, REPO_ID, RESULTS_REPO, API
|
14 |
-
|
15 |
|
16 |
MODEL_CACHE = {}
|
17 |
TASKS_CONFIG = LEADERBOARD_CONFIG["tasks"]
|
@@ -34,21 +36,44 @@ TASK_TO_METRIC["PairClassification"].append("cos_sim_ap")
|
|
34 |
TASK_TO_METRIC["PairClassification"].append("cosine_ap")
|
35 |
|
36 |
|
37 |
-
EXTERNAL_MODELS = {
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
TASK_DESCRIPTIONS["Overall"] = "Overall performance across MTEB tasks."
|
45 |
-
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
|
|
|
|
|
|
|
|
|
46 |
MODELS_TO_SKIP = MODEL_META["models_to_skip"]
|
47 |
CROSS_ENCODERS = MODEL_META["cross_encoders"]
|
48 |
-
BI_ENCODERS = [
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
TASK_TO_TASK_TYPE = {task_category: [] for task_category in TASKS}
|
@@ -64,12 +89,28 @@ MODEL_INFOS = {}
|
|
64 |
# with open(model_infos_path) as f:
|
65 |
# MODEL_INFOS = json.load(f)
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
if len(cols_to_rank) == 1:
|
70 |
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
71 |
else:
|
72 |
-
df.insert(
|
|
|
|
|
|
|
|
|
73 |
df.sort_values("Average", ascending=False, inplace=True)
|
74 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
75 |
df = df.round(2)
|
@@ -78,23 +119,26 @@ def add_rank(df):
|
|
78 |
return df
|
79 |
|
80 |
|
81 |
-
def make_clickable_model(model_name, link=None):
|
82 |
if link is None:
|
83 |
link = "https://huggingface.co/" + model_name
|
84 |
# Remove user from model name
|
85 |
-
return (
|
86 |
-
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
87 |
-
)
|
88 |
|
89 |
|
90 |
def add_lang(examples):
|
91 |
-
if not(examples["eval_language"]) or (examples["eval_language"] == "default"):
|
92 |
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
|
93 |
else:
|
94 |
-
examples["mteb_dataset_name_with_lang"] =
|
|
|
|
|
95 |
return examples
|
96 |
|
97 |
-
|
|
|
|
|
|
|
98 |
|
99 |
def add_task(examples):
|
100 |
# Could be added to the dataset loading script instead
|
@@ -111,16 +155,22 @@ def add_task(examples):
|
|
111 |
examples["mteb_task"] = "Unknown"
|
112 |
return examples
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
118 |
else:
|
119 |
-
return x["mteb_task"] == task and x["metric"] in metrics
|
|
|
120 |
|
121 |
-
def filter_metric_fetched(name, metric, expected_metrics):
|
122 |
-
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks.
|
123 |
-
return
|
|
|
|
|
|
|
|
|
124 |
|
125 |
|
126 |
def get_dim_seq_size(model):
|
@@ -139,12 +189,20 @@ def get_dim_seq_size(model):
|
|
139 |
config_path = hf_hub_download(model.modelId, filename="config.json")
|
140 |
config = json.load(open(config_path))
|
141 |
if not dim:
|
142 |
-
dim = config.get(
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
if dim == "" or seq == "":
|
146 |
raise Exception(f"Could not find dim or seq for model {model.modelId}")
|
147 |
-
|
148 |
# Get model file size without downloading. Parameters in million parameters and memory in GB
|
149 |
parameters, memory = get_model_parameters_memory(model)
|
150 |
return dim, seq, parameters, memory
|
@@ -159,27 +217,54 @@ def get_external_model_results():
|
|
159 |
for model in EXTERNAL_MODELS:
|
160 |
if model not in EXTERNAL_MODEL_RESULTS:
|
161 |
models_to_run.append(model)
|
162 |
-
EXTERNAL_MODEL_RESULTS[model] = {
|
|
|
|
|
163 |
|
164 |
## only if we want to re-calculate all instead of using the cache... it's likely they haven't changed
|
165 |
## but if your model results have changed, delete it from the "EXTERNAL_MODEL_RESULTS.json" file
|
166 |
else:
|
167 |
-
EXTERNAL_MODEL_RESULTS = {
|
|
|
|
|
|
|
168 |
models_to_run = EXTERNAL_MODELS
|
169 |
|
170 |
pbar = tqdm(models_to_run, desc="Fetching external model results")
|
171 |
for model in pbar:
|
172 |
pbar.set_description(f"Fetching external model results for {model!r}")
|
173 |
-
ds = load_dataset(
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
ds = ds.map(add_lang)
|
175 |
ds = ds.map(add_task)
|
176 |
-
base_dict = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
for task, metrics in TASK_TO_METRIC.items():
|
179 |
-
ds_dict = ds.filter(lambda x: filter_metric_external(x, task, metrics))[
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
# metrics[0] is the main name for this metric; other names in the list are legacy for backward-compat
|
182 |
-
EXTERNAL_MODEL_RESULTS[model][task][metrics[0]].append(
|
|
|
|
|
183 |
|
184 |
# Save & cache EXTERNAL_MODEL_RESULTS
|
185 |
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
|
@@ -188,7 +273,7 @@ def get_external_model_results():
|
|
188 |
return EXTERNAL_MODEL_RESULTS
|
189 |
|
190 |
|
191 |
-
def download_or_use_cache(modelId):
|
192 |
global MODEL_CACHE
|
193 |
if modelId in MODEL_CACHE:
|
194 |
return MODEL_CACHE[modelId]
|
@@ -202,7 +287,15 @@ def download_or_use_cache(modelId):
|
|
202 |
return meta
|
203 |
|
204 |
|
205 |
-
def get_mteb_data(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
global MODEL_INFOS
|
207 |
|
208 |
with open("EXTERNAL_MODEL_RESULTS.json", "r") as f:
|
@@ -211,46 +304,62 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
211 |
api = API
|
212 |
models = list(api.list_models(filter="mteb"))
|
213 |
# Legacy names changes; Also fetch the old results & merge later
|
214 |
-
if
|
215 |
-
datasets.append(
|
216 |
-
if
|
217 |
-
datasets.append(
|
218 |
-
if
|
219 |
-
datasets.append(
|
220 |
# Initialize list to models that we cannot fetch metadata from
|
221 |
df_list = []
|
222 |
for model in external_model_results:
|
223 |
results_list = []
|
224 |
for task in tasks:
|
225 |
# Not all models have InstructionRetrieval, other new tasks
|
226 |
-
if task not in external_model_results[model]:
|
|
|
227 |
results_list += external_model_results[model][task][task_to_metric[task][0]]
|
228 |
-
|
229 |
if len(datasets) > 0:
|
230 |
-
res = {
|
|
|
|
|
|
|
|
|
|
|
231 |
elif langs:
|
232 |
# Would be cleaner to rely on an extra language column instead
|
233 |
langs_format = [f"({lang})" for lang in langs]
|
234 |
-
res = {
|
|
|
|
|
|
|
|
|
|
|
235 |
else:
|
236 |
res = {k: v for d in results_list for k, v in d.items()}
|
237 |
# Model & at least one result
|
238 |
if len(res) > 1:
|
239 |
if add_emb_dim:
|
240 |
-
res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
|
243 |
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
|
244 |
df_list.append(res)
|
245 |
|
246 |
pbar = tqdm(models, desc="Fetching model metadata")
|
247 |
for model in pbar:
|
248 |
-
if model.modelId in MODELS_TO_SKIP:
|
|
|
249 |
pbar.set_description(f"Fetching {model.modelId!r} metadata")
|
250 |
meta = download_or_use_cache(model.modelId)
|
251 |
-
MODEL_INFOS[model.modelId] = {
|
252 |
-
"metadata": meta
|
253 |
-
}
|
254 |
if "model-index" not in meta:
|
255 |
continue
|
256 |
# meta['model-index'][0]["results"] is list of elements like:
|
@@ -269,13 +378,45 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
269 |
# },
|
270 |
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
|
271 |
if len(datasets) > 0:
|
272 |
-
task_results = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
elif langs:
|
274 |
-
task_results = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
else:
|
276 |
-
task_results = [
|
|
|
|
|
|
|
|
|
277 |
try:
|
278 |
-
out = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
except Exception as e:
|
280 |
print("ERROR", model.modelId, e)
|
281 |
continue
|
@@ -286,7 +427,9 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
286 |
if add_emb_dim:
|
287 |
# The except clause triggers on gated repos, we can use external metadata for those
|
288 |
try:
|
289 |
-
MODEL_INFOS[model.modelId]["dim_seq_size"] = list(
|
|
|
|
|
290 |
except:
|
291 |
name_without_org = model.modelId.split("/")[-1]
|
292 |
# EXTERNAL_MODEL_TO_SIZE[name_without_org] refers to millions of parameters, so for memory usage
|
@@ -296,12 +439,29 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
296 |
EXTERNAL_MODEL_TO_DIM.get(name_without_org, ""),
|
297 |
EXTERNAL_MODEL_TO_SEQLEN.get(name_without_org, ""),
|
298 |
EXTERNAL_MODEL_TO_SIZE.get(name_without_org, ""),
|
299 |
-
round(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
)
|
301 |
-
|
|
|
|
|
|
|
|
|
|
|
302 |
df_list.append(out)
|
303 |
model_siblings = model.siblings or []
|
304 |
-
if
|
|
|
|
|
|
|
|
|
305 |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
|
306 |
|
307 |
# # Save & cache MODEL_INFOS
|
@@ -314,28 +474,39 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
314 |
df = df.groupby("Model", as_index=False).first()
|
315 |
# Put 'Model' column first
|
316 |
cols = sorted(list(df.columns))
|
317 |
-
base_columns = [
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
if len(datasets) > 0:
|
319 |
# Update legacy column names to be merged with newer ones
|
320 |
# Update 'MLSUMClusteringP2P (fr)' with values from 'MLSUMClusteringP2P'
|
321 |
-
if (
|
322 |
-
df[
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
329 |
if "PawsXPairClassification (fr)" not in cols:
|
330 |
-
df[
|
331 |
else:
|
332 |
-
df[
|
|
|
|
|
333 |
# make all the columns the same
|
334 |
-
datasets.remove(
|
335 |
-
cols.remove(
|
336 |
-
df.drop(columns=[
|
337 |
-
|
338 |
-
|
339 |
# Filter invalid columns
|
340 |
cols = [col for col in cols if col in base_columns + datasets]
|
341 |
i = 0
|
@@ -345,7 +516,7 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
345 |
i += 1
|
346 |
df = df[cols]
|
347 |
if rank:
|
348 |
-
df = add_rank(df)
|
349 |
if fillna:
|
350 |
df.fillna("", inplace=True)
|
351 |
return df
|
@@ -353,7 +524,7 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
353 |
|
354 |
# Get dict with a task list for each task category
|
355 |
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]}
|
356 |
-
def get_mteb_average(task_dict: dict):
|
357 |
all_tasks = reduce(lambda x, y: x + y, task_dict.values())
|
358 |
DATA_OVERALL = get_mteb_data(
|
359 |
tasks=list(task_dict.keys()),
|
@@ -364,10 +535,20 @@ def get_mteb_average(task_dict: dict):
|
|
364 |
)
|
365 |
# Debugging:
|
366 |
# DATA_OVERALL.to_csv("overall.csv")
|
367 |
-
DATA_OVERALL.insert(
|
|
|
|
|
|
|
|
|
368 |
for i, (task_category, task_category_list) in enumerate(task_dict.items()):
|
369 |
-
DATA_OVERALL.insert(
|
370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
# Start ranking from 1
|
372 |
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
|
373 |
|
@@ -375,15 +556,32 @@ def get_mteb_average(task_dict: dict):
|
|
375 |
|
376 |
DATA_TASKS = {}
|
377 |
for task_category, task_category_list in task_dict.items():
|
378 |
-
DATA_TASKS[task_category] = add_rank(
|
379 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
|
381 |
# Fill NaN after averaging
|
382 |
DATA_OVERALL.fillna("", inplace=True)
|
383 |
|
384 |
-
data_overall_rows = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
for task_category, task_category_list in task_dict.items():
|
386 |
-
data_overall_rows.append(
|
|
|
|
|
387 |
|
388 |
DATA_OVERALL = DATA_OVERALL[data_overall_rows]
|
389 |
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
|
@@ -391,13 +589,10 @@ def get_mteb_average(task_dict: dict):
|
|
391 |
return DATA_OVERALL, DATA_TASKS
|
392 |
|
393 |
|
394 |
-
def refresh_leaderboard():
|
395 |
"""
|
396 |
The main code to refresh and calculate results for the leaderboard. It does this by fetching the results from the
|
397 |
external models and the models in the leaderboard, then calculating the average scores for each task category.
|
398 |
-
|
399 |
-
Returns:
|
400 |
-
dict: A dictionary containing the overall leaderboard and the task category leaderboards.
|
401 |
"""
|
402 |
|
403 |
# get external model results and cache them
|
@@ -406,14 +601,14 @@ def refresh_leaderboard():
|
|
406 |
|
407 |
boards_data = {}
|
408 |
all_data_tasks = []
|
409 |
-
pbar_tasks = tqdm(
|
|
|
|
|
|
|
|
|
|
|
410 |
for board, board_config in pbar_tasks:
|
411 |
-
|
412 |
-
if board != "rar-b": continue
|
413 |
-
boards_data[board] = {
|
414 |
-
"data_overall": None,
|
415 |
-
"data_tasks": {}
|
416 |
-
}
|
417 |
pbar_tasks.set_description(f"Fetching leaderboard results for {board!r}")
|
418 |
pbar_tasks.refresh()
|
419 |
if board_config["has_overall"]:
|
@@ -423,30 +618,30 @@ def refresh_leaderboard():
|
|
423 |
all_data_tasks.extend(data_tasks.values())
|
424 |
else:
|
425 |
for task_category, task_category_list in board_config["tasks"].items():
|
426 |
-
data_task_category = get_mteb_data(
|
427 |
-
|
|
|
|
|
|
|
|
|
428 |
boards_data[board]["data_tasks"][task_category] = data_task_category
|
429 |
all_data_tasks.append(data_task_category)
|
430 |
|
431 |
return all_data_tasks, boards_data
|
432 |
|
433 |
|
434 |
-
|
435 |
-
def write_out_results(item, item_name: str):
|
436 |
"""
|
437 |
Due to their complex structure, let's recursively create subfolders until we reach the end
|
438 |
of the item and then save the DFs as jsonl files
|
439 |
|
440 |
Args:
|
441 |
-
item
|
442 |
-
item_name
|
443 |
-
|
444 |
-
Returns:
|
445 |
-
None
|
446 |
"""
|
447 |
main_folder = item_name
|
448 |
|
449 |
-
if isinstance(item, list):
|
450 |
for i, v in enumerate(item):
|
451 |
write_out_results(v, os.path.join(main_folder, str(i)))
|
452 |
|
@@ -463,8 +658,9 @@ def write_out_results(item, item_name: str):
|
|
463 |
elif isinstance(item, pd.DataFrame):
|
464 |
print(f"Saving {main_folder} to {main_folder}/default.jsonl")
|
465 |
os.makedirs(main_folder, exist_ok=True)
|
466 |
-
|
467 |
-
item.reset_index(
|
|
|
468 |
|
469 |
elif isinstance(item, str):
|
470 |
print(f"Saving {main_folder} to {main_folder}/default.txt")
|
@@ -483,38 +679,44 @@ def write_out_results(item, item_name: str):
|
|
483 |
raise Exception(f"Unknown type {type(item)}")
|
484 |
|
485 |
|
486 |
-
def load_results(data_path):
|
487 |
"""
|
488 |
Do the reverse of `write_out_results` to reconstruct the item
|
489 |
|
490 |
Args:
|
491 |
-
data_path
|
492 |
|
493 |
Returns:
|
494 |
-
|
495 |
"""
|
496 |
if os.path.isdir(data_path):
|
497 |
# if the folder just has numbers from 0 to N, load as a list
|
498 |
all_files_in_dir = list(os.listdir(data_path))
|
499 |
if set(all_files_in_dir) == set([str(i) for i in range(len(all_files_in_dir))]):
|
500 |
### the list case
|
501 |
-
return [
|
|
|
|
|
|
|
502 |
else:
|
503 |
if len(all_files_in_dir) == 1:
|
504 |
file_name = all_files_in_dir[0]
|
505 |
-
if file_name == "default.jsonl":
|
506 |
return load_results(os.path.join(data_path, file_name))
|
507 |
-
else:
|
508 |
return {file_name: load_results(os.path.join(data_path, file_name))}
|
509 |
else:
|
510 |
-
return {
|
511 |
-
|
|
|
|
|
|
|
512 |
elif data_path.endswith(".jsonl"):
|
513 |
df = pd.read_json(data_path, orient="records", lines=True)
|
514 |
if "index" in df.columns:
|
515 |
df = df.set_index("index")
|
516 |
return df
|
517 |
-
|
518 |
else:
|
519 |
with open(data_path, "r") as f:
|
520 |
data = f.read()
|
@@ -524,17 +726,16 @@ def load_results(data_path):
|
|
524 |
return data
|
525 |
|
526 |
|
527 |
-
|
528 |
if __name__ == "__main__":
|
529 |
-
print(
|
530 |
all_data_tasks, boards_data = refresh_leaderboard()
|
531 |
-
print(
|
532 |
# save them so that the leaderboard can use them. They're quite complex though
|
533 |
-
# but we can't use pickle files because of git-lfs.
|
534 |
write_out_results(all_data_tasks, "all_data_tasks")
|
535 |
write_out_results(boards_data, "boards_data")
|
536 |
|
537 |
# to load them use
|
538 |
# all_data_tasks = load_results("all_data_tasks")
|
539 |
# boards_data = load_results("boards_data")
|
540 |
-
print("Done saving results!")
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
import json
|
4 |
import os
|
5 |
import re
|
6 |
+
from functools import reduce
|
7 |
+
from typing import Any
|
8 |
|
9 |
+
import pandas as pd
|
10 |
from datasets import load_dataset
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub.repocard import metadata_load
|
|
|
13 |
from tqdm.autonotebook import tqdm
|
14 |
|
15 |
+
from envs import API, LEADERBOARD_CONFIG, MODEL_META, REPO_ID, RESULTS_REPO
|
16 |
from utils.model_size import get_model_parameters_memory
|
|
|
|
|
17 |
|
18 |
MODEL_CACHE = {}
|
19 |
TASKS_CONFIG = LEADERBOARD_CONFIG["tasks"]
|
|
|
36 |
TASK_TO_METRIC["PairClassification"].append("cosine_ap")
|
37 |
|
38 |
|
39 |
+
EXTERNAL_MODELS = {
|
40 |
+
k for k, v in MODEL_META["model_meta"].items() if v.get("is_external", False)
|
41 |
+
}
|
42 |
+
EXTERNAL_MODEL_TO_LINK = {
|
43 |
+
k: v["link"] for k, v in MODEL_META["model_meta"].items() if v.get("link", False)
|
44 |
+
}
|
45 |
+
EXTERNAL_MODEL_TO_DIM = {
|
46 |
+
k: v["dim"] for k, v in MODEL_META["model_meta"].items() if v.get("dim", False)
|
47 |
+
}
|
48 |
+
EXTERNAL_MODEL_TO_SEQLEN = {
|
49 |
+
k: v["seq_len"]
|
50 |
+
for k, v in MODEL_META["model_meta"].items()
|
51 |
+
if v.get("seq_len", False)
|
52 |
+
}
|
53 |
+
EXTERNAL_MODEL_TO_SIZE = {
|
54 |
+
k: v["size"] for k, v in MODEL_META["model_meta"].items() if v.get("size", False)
|
55 |
+
}
|
56 |
+
PROPRIETARY_MODELS = {
|
57 |
+
k for k, v in MODEL_META["model_meta"].items() if v.get("is_proprietary", False)
|
58 |
+
}
|
59 |
+
TASK_DESCRIPTIONS = {k: v["task_description"] for k, v in TASKS_CONFIG.items()}
|
60 |
TASK_DESCRIPTIONS["Overall"] = "Overall performance across MTEB tasks."
|
61 |
+
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
|
62 |
+
k
|
63 |
+
for k, v in MODEL_META["model_meta"].items()
|
64 |
+
if v.get("is_sentence_transformers_compatible", False)
|
65 |
+
}
|
66 |
MODELS_TO_SKIP = MODEL_META["models_to_skip"]
|
67 |
CROSS_ENCODERS = MODEL_META["cross_encoders"]
|
68 |
+
BI_ENCODERS = [
|
69 |
+
k for k, _ in MODEL_META["model_meta"].items() if k not in CROSS_ENCODERS + ["bm25"]
|
70 |
+
]
|
71 |
+
INSTRUCT_MODELS = {
|
72 |
+
k for k, v in MODEL_META["model_meta"].items() if v.get("uses_instruct", False)
|
73 |
+
}
|
74 |
+
NOINSTRUCT_MODELS = {
|
75 |
+
k for k, v in MODEL_META["model_meta"].items() if not v.get("uses_instruct", False)
|
76 |
+
}
|
77 |
|
78 |
|
79 |
TASK_TO_TASK_TYPE = {task_category: [] for task_category in TASKS}
|
|
|
89 |
# with open(model_infos_path) as f:
|
90 |
# MODEL_INFOS = json.load(f)
|
91 |
|
92 |
+
|
93 |
+
def add_rank(df: pd.DataFrame) -> pd.DataFrame:
|
94 |
+
cols_to_rank = [
|
95 |
+
col
|
96 |
+
for col in df.columns
|
97 |
+
if col
|
98 |
+
not in [
|
99 |
+
"Model",
|
100 |
+
"Model Size (Million Parameters)",
|
101 |
+
"Memory Usage (GB, fp32)",
|
102 |
+
"Embedding Dimensions",
|
103 |
+
"Max Tokens",
|
104 |
+
]
|
105 |
+
]
|
106 |
if len(cols_to_rank) == 1:
|
107 |
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
|
108 |
else:
|
109 |
+
df.insert(
|
110 |
+
len(df.columns) - len(cols_to_rank),
|
111 |
+
"Average",
|
112 |
+
df[cols_to_rank].mean(axis=1, skipna=False),
|
113 |
+
)
|
114 |
df.sort_values("Average", ascending=False, inplace=True)
|
115 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
116 |
df = df.round(2)
|
|
|
119 |
return df
|
120 |
|
121 |
|
122 |
+
def make_clickable_model(model_name: str, link: None | str = None) -> str:
|
123 |
if link is None:
|
124 |
link = "https://huggingface.co/" + model_name
|
125 |
# Remove user from model name
|
126 |
+
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
|
|
|
|
127 |
|
128 |
|
129 |
def add_lang(examples):
|
130 |
+
if not (examples["eval_language"]) or (examples["eval_language"] == "default"):
|
131 |
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
|
132 |
else:
|
133 |
+
examples["mteb_dataset_name_with_lang"] = (
|
134 |
+
examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
|
135 |
+
)
|
136 |
return examples
|
137 |
|
138 |
+
|
139 |
+
def norm(names: str) -> set:
|
140 |
+
return set([name.split(" ")[0] for name in names])
|
141 |
+
|
142 |
|
143 |
def add_task(examples):
|
144 |
# Could be added to the dataset loading script instead
|
|
|
155 |
examples["mteb_task"] = "Unknown"
|
156 |
return examples
|
157 |
|
158 |
+
|
159 |
+
def filter_metric_external(x, task, metrics) -> bool:
|
160 |
+
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks.
|
161 |
+
if x["mteb_dataset_name"] in ["LEMBNeedleRetrieval", "LEMBPasskeyRetrieval"]:
|
162 |
+
return bool(x["mteb_task"] == task and x["metric"] == "ndcg_at_1")
|
163 |
else:
|
164 |
+
return bool(x["mteb_task"] == task and x["metric"] in metrics)
|
165 |
+
|
166 |
|
167 |
+
def filter_metric_fetched(name: str, metric: str, expected_metrics) -> bool:
|
168 |
+
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks.
|
169 |
+
return bool(
|
170 |
+
metric == "ndcg_at_1"
|
171 |
+
if name in ["LEMBNeedleRetrieval", "LEMBPasskeyRetrieval"]
|
172 |
+
else metric in expected_metrics
|
173 |
+
)
|
174 |
|
175 |
|
176 |
def get_dim_seq_size(model):
|
|
|
189 |
config_path = hf_hub_download(model.modelId, filename="config.json")
|
190 |
config = json.load(open(config_path))
|
191 |
if not dim:
|
192 |
+
dim = config.get(
|
193 |
+
"hidden_dim", config.get("hidden_size", config.get("d_model", ""))
|
194 |
+
)
|
195 |
+
seq = config.get(
|
196 |
+
"n_positions",
|
197 |
+
config.get(
|
198 |
+
"max_position_embeddings",
|
199 |
+
config.get("n_ctx", config.get("seq_length", "")),
|
200 |
+
),
|
201 |
+
)
|
202 |
+
|
203 |
if dim == "" or seq == "":
|
204 |
raise Exception(f"Could not find dim or seq for model {model.modelId}")
|
205 |
+
|
206 |
# Get model file size without downloading. Parameters in million parameters and memory in GB
|
207 |
parameters, memory = get_model_parameters_memory(model)
|
208 |
return dim, seq, parameters, memory
|
|
|
217 |
for model in EXTERNAL_MODELS:
|
218 |
if model not in EXTERNAL_MODEL_RESULTS:
|
219 |
models_to_run.append(model)
|
220 |
+
EXTERNAL_MODEL_RESULTS[model] = {
|
221 |
+
k: {v[0]: []} for k, v in TASK_TO_METRIC.items()
|
222 |
+
}
|
223 |
|
224 |
## only if we want to re-calculate all instead of using the cache... it's likely they haven't changed
|
225 |
## but if your model results have changed, delete it from the "EXTERNAL_MODEL_RESULTS.json" file
|
226 |
else:
|
227 |
+
EXTERNAL_MODEL_RESULTS = {
|
228 |
+
model: {k: {v[0]: []} for k, v in TASK_TO_METRIC.items()}
|
229 |
+
for model in EXTERNAL_MODELS
|
230 |
+
}
|
231 |
models_to_run = EXTERNAL_MODELS
|
232 |
|
233 |
pbar = tqdm(models_to_run, desc="Fetching external model results")
|
234 |
for model in pbar:
|
235 |
pbar.set_description(f"Fetching external model results for {model!r}")
|
236 |
+
ds = load_dataset(
|
237 |
+
RESULTS_REPO,
|
238 |
+
model,
|
239 |
+
trust_remote_code=True,
|
240 |
+
download_mode="force_redownload",
|
241 |
+
verification_mode="no_checks",
|
242 |
+
)
|
243 |
ds = ds.map(add_lang)
|
244 |
ds = ds.map(add_task)
|
245 |
+
base_dict = {
|
246 |
+
"Model": make_clickable_model(
|
247 |
+
model,
|
248 |
+
link=EXTERNAL_MODEL_TO_LINK.get(
|
249 |
+
model, f"https://huggingface.co/spaces/{REPO_ID}"
|
250 |
+
),
|
251 |
+
)
|
252 |
+
}
|
253 |
|
254 |
for task, metrics in TASK_TO_METRIC.items():
|
255 |
+
ds_dict = ds.filter(lambda x: filter_metric_external(x, task, metrics))[
|
256 |
+
"test"
|
257 |
+
].to_dict()
|
258 |
+
ds_dict = {
|
259 |
+
k: round(v, 2)
|
260 |
+
for k, v in zip(
|
261 |
+
ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"]
|
262 |
+
)
|
263 |
+
}
|
264 |
# metrics[0] is the main name for this metric; other names in the list are legacy for backward-compat
|
265 |
+
EXTERNAL_MODEL_RESULTS[model][task][metrics[0]].append(
|
266 |
+
{**base_dict, **ds_dict}
|
267 |
+
)
|
268 |
|
269 |
# Save & cache EXTERNAL_MODEL_RESULTS
|
270 |
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
|
|
|
273 |
return EXTERNAL_MODEL_RESULTS
|
274 |
|
275 |
|
276 |
+
def download_or_use_cache(modelId: str):
|
277 |
global MODEL_CACHE
|
278 |
if modelId in MODEL_CACHE:
|
279 |
return MODEL_CACHE[modelId]
|
|
|
287 |
return meta
|
288 |
|
289 |
|
290 |
+
def get_mteb_data(
|
291 |
+
tasks: list = ["Clustering"],
|
292 |
+
langs: list = [],
|
293 |
+
datasets: list = [],
|
294 |
+
fillna: bool = True,
|
295 |
+
add_emb_dim: bool = True,
|
296 |
+
task_to_metric: dict = TASK_TO_METRIC,
|
297 |
+
rank: bool = True,
|
298 |
+
) -> pd.DataFrame:
|
299 |
global MODEL_INFOS
|
300 |
|
301 |
with open("EXTERNAL_MODEL_RESULTS.json", "r") as f:
|
|
|
304 |
api = API
|
305 |
models = list(api.list_models(filter="mteb"))
|
306 |
# Legacy names changes; Also fetch the old results & merge later
|
307 |
+
if "MLSUMClusteringP2P (fr)" in datasets:
|
308 |
+
datasets.append("MLSUMClusteringP2P")
|
309 |
+
if "MLSUMClusteringS2S (fr)" in datasets:
|
310 |
+
datasets.append("MLSUMClusteringS2S")
|
311 |
+
if "PawsXPairClassification (fr)" in datasets:
|
312 |
+
datasets.append("PawsX (fr)")
|
313 |
# Initialize list to models that we cannot fetch metadata from
|
314 |
df_list = []
|
315 |
for model in external_model_results:
|
316 |
results_list = []
|
317 |
for task in tasks:
|
318 |
# Not all models have InstructionRetrieval, other new tasks
|
319 |
+
if task not in external_model_results[model]:
|
320 |
+
continue
|
321 |
results_list += external_model_results[model][task][task_to_metric[task][0]]
|
322 |
+
|
323 |
if len(datasets) > 0:
|
324 |
+
res = {
|
325 |
+
k: v
|
326 |
+
for d in results_list
|
327 |
+
for k, v in d.items()
|
328 |
+
if (k == "Model") or any([x in k for x in datasets])
|
329 |
+
}
|
330 |
elif langs:
|
331 |
# Would be cleaner to rely on an extra language column instead
|
332 |
langs_format = [f"({lang})" for lang in langs]
|
333 |
+
res = {
|
334 |
+
k: v
|
335 |
+
for d in results_list
|
336 |
+
for k, v in d.items()
|
337 |
+
if any([k.split(" ")[-1] in (k, x) for x in langs_format])
|
338 |
+
}
|
339 |
else:
|
340 |
res = {k: v for d in results_list for k, v in d.items()}
|
341 |
# Model & at least one result
|
342 |
if len(res) > 1:
|
343 |
if add_emb_dim:
|
344 |
+
res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(
|
345 |
+
model, ""
|
346 |
+
)
|
347 |
+
res["Memory Usage (GB, fp32)"] = (
|
348 |
+
round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2)
|
349 |
+
if res["Model Size (Million Parameters)"] != ""
|
350 |
+
else ""
|
351 |
+
)
|
352 |
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
|
353 |
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
|
354 |
df_list.append(res)
|
355 |
|
356 |
pbar = tqdm(models, desc="Fetching model metadata")
|
357 |
for model in pbar:
|
358 |
+
if model.modelId in MODELS_TO_SKIP:
|
359 |
+
continue
|
360 |
pbar.set_description(f"Fetching {model.modelId!r} metadata")
|
361 |
meta = download_or_use_cache(model.modelId)
|
362 |
+
MODEL_INFOS[model.modelId] = {"metadata": meta}
|
|
|
|
|
363 |
if "model-index" not in meta:
|
364 |
continue
|
365 |
# meta['model-index'][0]["results"] is list of elements like:
|
|
|
378 |
# },
|
379 |
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
|
380 |
if len(datasets) > 0:
|
381 |
+
task_results = [
|
382 |
+
sub_res
|
383 |
+
for sub_res in meta["model-index"][0]["results"]
|
384 |
+
if (sub_res.get("task", {}).get("type", "") in tasks)
|
385 |
+
and any(
|
386 |
+
[x in sub_res.get("dataset", {}).get("name", "") for x in datasets]
|
387 |
+
)
|
388 |
+
]
|
389 |
elif langs:
|
390 |
+
task_results = [
|
391 |
+
sub_res
|
392 |
+
for sub_res in meta["model-index"][0]["results"]
|
393 |
+
if (sub_res.get("task", {}).get("type", "") in tasks)
|
394 |
+
and (
|
395 |
+
sub_res.get("dataset", {}).get("config", "default")
|
396 |
+
in ("default", *langs)
|
397 |
+
)
|
398 |
+
]
|
399 |
else:
|
400 |
+
task_results = [
|
401 |
+
sub_res
|
402 |
+
for sub_res in meta["model-index"][0]["results"]
|
403 |
+
if (sub_res.get("task", {}).get("type", "") in tasks)
|
404 |
+
]
|
405 |
try:
|
406 |
+
out = [
|
407 |
+
{
|
408 |
+
res["dataset"]["name"].replace("MTEB ", ""): [
|
409 |
+
round(score["value"], 2)
|
410 |
+
for score in res["metrics"]
|
411 |
+
if filter_metric_fetched(
|
412 |
+
res["dataset"]["name"].replace("MTEB ", ""),
|
413 |
+
score["type"],
|
414 |
+
task_to_metric.get(res["task"]["type"]),
|
415 |
+
)
|
416 |
+
][0]
|
417 |
+
}
|
418 |
+
for res in task_results
|
419 |
+
]
|
420 |
except Exception as e:
|
421 |
print("ERROR", model.modelId, e)
|
422 |
continue
|
|
|
427 |
if add_emb_dim:
|
428 |
# The except clause triggers on gated repos, we can use external metadata for those
|
429 |
try:
|
430 |
+
MODEL_INFOS[model.modelId]["dim_seq_size"] = list(
|
431 |
+
get_dim_seq_size(model)
|
432 |
+
)
|
433 |
except:
|
434 |
name_without_org = model.modelId.split("/")[-1]
|
435 |
# EXTERNAL_MODEL_TO_SIZE[name_without_org] refers to millions of parameters, so for memory usage
|
|
|
439 |
EXTERNAL_MODEL_TO_DIM.get(name_without_org, ""),
|
440 |
EXTERNAL_MODEL_TO_SEQLEN.get(name_without_org, ""),
|
441 |
EXTERNAL_MODEL_TO_SIZE.get(name_without_org, ""),
|
442 |
+
round(
|
443 |
+
EXTERNAL_MODEL_TO_SIZE[name_without_org]
|
444 |
+
* 1e6
|
445 |
+
* 4
|
446 |
+
/ 1024**3,
|
447 |
+
2,
|
448 |
+
)
|
449 |
+
if name_without_org in EXTERNAL_MODEL_TO_SIZE
|
450 |
+
else "",
|
451 |
)
|
452 |
+
(
|
453 |
+
out["Embedding Dimensions"],
|
454 |
+
out["Max Tokens"],
|
455 |
+
out["Model Size (Million Parameters)"],
|
456 |
+
out["Memory Usage (GB, fp32)"],
|
457 |
+
) = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"])
|
458 |
df_list.append(out)
|
459 |
model_siblings = model.siblings or []
|
460 |
+
if (
|
461 |
+
model.library_name == "sentence-transformers"
|
462 |
+
or "sentence-transformers" in model.tags
|
463 |
+
or "modules.json" in {file.rfilename for file in model_siblings}
|
464 |
+
):
|
465 |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
|
466 |
|
467 |
# # Save & cache MODEL_INFOS
|
|
|
474 |
df = df.groupby("Model", as_index=False).first()
|
475 |
# Put 'Model' column first
|
476 |
cols = sorted(list(df.columns))
|
477 |
+
base_columns = [
|
478 |
+
"Model",
|
479 |
+
"Model Size (Million Parameters)",
|
480 |
+
"Memory Usage (GB, fp32)",
|
481 |
+
"Embedding Dimensions",
|
482 |
+
"Max Tokens",
|
483 |
+
]
|
484 |
if len(datasets) > 0:
|
485 |
# Update legacy column names to be merged with newer ones
|
486 |
# Update 'MLSUMClusteringP2P (fr)' with values from 'MLSUMClusteringP2P'
|
487 |
+
if ("MLSUMClusteringP2P (fr)" in datasets) and ("MLSUMClusteringP2P" in cols):
|
488 |
+
df["MLSUMClusteringP2P (fr)"] = df["MLSUMClusteringP2P (fr)"].fillna(
|
489 |
+
df["MLSUMClusteringP2P"]
|
490 |
+
)
|
491 |
+
datasets.remove("MLSUMClusteringP2P")
|
492 |
+
if ("MLSUMClusteringS2S (fr)" in datasets) and ("MLSUMClusteringS2S" in cols):
|
493 |
+
df["MLSUMClusteringS2S (fr)"] = df["MLSUMClusteringS2S (fr)"].fillna(
|
494 |
+
df["MLSUMClusteringS2S"]
|
495 |
+
)
|
496 |
+
datasets.remove("MLSUMClusteringS2S")
|
497 |
+
if ("PawsXPairClassification (fr)" in datasets) and ("PawsX (fr)" in cols):
|
498 |
+
# for the first bit no model has it, hence no column for it. We can remove this in a month or so
|
499 |
if "PawsXPairClassification (fr)" not in cols:
|
500 |
+
df["PawsXPairClassification (fr)"] = df["PawsX (fr)"]
|
501 |
else:
|
502 |
+
df["PawsXPairClassification (fr)"] = df[
|
503 |
+
"PawsXPairClassification (fr)"
|
504 |
+
].fillna(df["PawsX (fr)"])
|
505 |
# make all the columns the same
|
506 |
+
datasets.remove("PawsX (fr)")
|
507 |
+
cols.remove("PawsX (fr)")
|
508 |
+
df.drop(columns=["PawsX (fr)"], inplace=True)
|
509 |
+
|
|
|
510 |
# Filter invalid columns
|
511 |
cols = [col for col in cols if col in base_columns + datasets]
|
512 |
i = 0
|
|
|
516 |
i += 1
|
517 |
df = df[cols]
|
518 |
if rank:
|
519 |
+
df = add_rank(df)
|
520 |
if fillna:
|
521 |
df.fillna("", inplace=True)
|
522 |
return df
|
|
|
524 |
|
525 |
# Get dict with a task list for each task category
|
526 |
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]}
|
527 |
+
def get_mteb_average(task_dict: dict) -> tuple[Any, dict]:
|
528 |
all_tasks = reduce(lambda x, y: x + y, task_dict.values())
|
529 |
DATA_OVERALL = get_mteb_data(
|
530 |
tasks=list(task_dict.keys()),
|
|
|
535 |
)
|
536 |
# Debugging:
|
537 |
# DATA_OVERALL.to_csv("overall.csv")
|
538 |
+
DATA_OVERALL.insert(
|
539 |
+
1,
|
540 |
+
f"Average ({len(all_tasks)} datasets)",
|
541 |
+
DATA_OVERALL[all_tasks].mean(axis=1, skipna=False),
|
542 |
+
)
|
543 |
for i, (task_category, task_category_list) in enumerate(task_dict.items()):
|
544 |
+
DATA_OVERALL.insert(
|
545 |
+
i + 2,
|
546 |
+
f"{task_category} Average ({len(task_category_list)} datasets)",
|
547 |
+
DATA_OVERALL[task_category_list].mean(axis=1, skipna=False),
|
548 |
+
)
|
549 |
+
DATA_OVERALL.sort_values(
|
550 |
+
f"Average ({len(all_tasks)} datasets)", ascending=False, inplace=True
|
551 |
+
)
|
552 |
# Start ranking from 1
|
553 |
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
|
554 |
|
|
|
556 |
|
557 |
DATA_TASKS = {}
|
558 |
for task_category, task_category_list in task_dict.items():
|
559 |
+
DATA_TASKS[task_category] = add_rank(
|
560 |
+
DATA_OVERALL[
|
561 |
+
["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"]
|
562 |
+
+ task_category_list
|
563 |
+
]
|
564 |
+
)
|
565 |
+
DATA_TASKS[task_category] = DATA_TASKS[task_category][
|
566 |
+
DATA_TASKS[task_category].iloc[:, 4:].ne("").any(axis=1)
|
567 |
+
]
|
568 |
|
569 |
# Fill NaN after averaging
|
570 |
DATA_OVERALL.fillna("", inplace=True)
|
571 |
|
572 |
+
data_overall_rows = [
|
573 |
+
"Rank",
|
574 |
+
"Model",
|
575 |
+
"Model Size (Million Parameters)",
|
576 |
+
"Memory Usage (GB, fp32)",
|
577 |
+
"Embedding Dimensions",
|
578 |
+
"Max Tokens",
|
579 |
+
f"Average ({len(all_tasks)} datasets)",
|
580 |
+
]
|
581 |
for task_category, task_category_list in task_dict.items():
|
582 |
+
data_overall_rows.append(
|
583 |
+
f"{task_category} Average ({len(task_category_list)} datasets)"
|
584 |
+
)
|
585 |
|
586 |
DATA_OVERALL = DATA_OVERALL[data_overall_rows]
|
587 |
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
|
|
|
589 |
return DATA_OVERALL, DATA_TASKS
|
590 |
|
591 |
|
592 |
+
def refresh_leaderboard() -> tuple[list, dict]:
|
593 |
"""
|
594 |
The main code to refresh and calculate results for the leaderboard. It does this by fetching the results from the
|
595 |
external models and the models in the leaderboard, then calculating the average scores for each task category.
|
|
|
|
|
|
|
596 |
"""
|
597 |
|
598 |
# get external model results and cache them
|
|
|
601 |
|
602 |
boards_data = {}
|
603 |
all_data_tasks = []
|
604 |
+
pbar_tasks = tqdm(
|
605 |
+
BOARDS_CONFIG.items(),
|
606 |
+
desc="Fetching leaderboard results for ???",
|
607 |
+
total=len(BOARDS_CONFIG),
|
608 |
+
leave=True,
|
609 |
+
)
|
610 |
for board, board_config in pbar_tasks:
|
611 |
+
boards_data[board] = {"data_overall": None, "data_tasks": {}}
|
|
|
|
|
|
|
|
|
|
|
612 |
pbar_tasks.set_description(f"Fetching leaderboard results for {board!r}")
|
613 |
pbar_tasks.refresh()
|
614 |
if board_config["has_overall"]:
|
|
|
618 |
all_data_tasks.extend(data_tasks.values())
|
619 |
else:
|
620 |
for task_category, task_category_list in board_config["tasks"].items():
|
621 |
+
data_task_category = get_mteb_data(
|
622 |
+
tasks=[task_category], datasets=task_category_list
|
623 |
+
)
|
624 |
+
data_task_category.drop(
|
625 |
+
columns=["Embedding Dimensions", "Max Tokens"], inplace=True
|
626 |
+
)
|
627 |
boards_data[board]["data_tasks"][task_category] = data_task_category
|
628 |
all_data_tasks.append(data_task_category)
|
629 |
|
630 |
return all_data_tasks, boards_data
|
631 |
|
632 |
|
633 |
+
def write_out_results(item: dict, item_name: str) -> None:
|
|
|
634 |
"""
|
635 |
Due to their complex structure, let's recursively create subfolders until we reach the end
|
636 |
of the item and then save the DFs as jsonl files
|
637 |
|
638 |
Args:
|
639 |
+
item: The item to save
|
640 |
+
item_name: The name of the item
|
|
|
|
|
|
|
641 |
"""
|
642 |
main_folder = item_name
|
643 |
|
644 |
+
if isinstance(item, list):
|
645 |
for i, v in enumerate(item):
|
646 |
write_out_results(v, os.path.join(main_folder, str(i)))
|
647 |
|
|
|
658 |
elif isinstance(item, pd.DataFrame):
|
659 |
print(f"Saving {main_folder} to {main_folder}/default.jsonl")
|
660 |
os.makedirs(main_folder, exist_ok=True)
|
661 |
+
|
662 |
+
item.reset_index(inplace=True)
|
663 |
+
item.to_json(f"{main_folder}/default.jsonl", orient="records", lines=True)
|
664 |
|
665 |
elif isinstance(item, str):
|
666 |
print(f"Saving {main_folder} to {main_folder}/default.txt")
|
|
|
679 |
raise Exception(f"Unknown type {type(item)}")
|
680 |
|
681 |
|
682 |
+
def load_results(data_path: str) -> list | dict | pd.DataFrame | str | None:
|
683 |
"""
|
684 |
Do the reverse of `write_out_results` to reconstruct the item
|
685 |
|
686 |
Args:
|
687 |
+
data_path: The path to the data to load
|
688 |
|
689 |
Returns:
|
690 |
+
The loaded data
|
691 |
"""
|
692 |
if os.path.isdir(data_path):
|
693 |
# if the folder just has numbers from 0 to N, load as a list
|
694 |
all_files_in_dir = list(os.listdir(data_path))
|
695 |
if set(all_files_in_dir) == set([str(i) for i in range(len(all_files_in_dir))]):
|
696 |
### the list case
|
697 |
+
return [
|
698 |
+
load_results(os.path.join(data_path, str(i)))
|
699 |
+
for i in range(len(os.listdir(data_path)))
|
700 |
+
]
|
701 |
else:
|
702 |
if len(all_files_in_dir) == 1:
|
703 |
file_name = all_files_in_dir[0]
|
704 |
+
if file_name == "default.jsonl":
|
705 |
return load_results(os.path.join(data_path, file_name))
|
706 |
+
else: ### the dict case
|
707 |
return {file_name: load_results(os.path.join(data_path, file_name))}
|
708 |
else:
|
709 |
+
return {
|
710 |
+
file_name: load_results(os.path.join(data_path, file_name))
|
711 |
+
for file_name in all_files_in_dir
|
712 |
+
}
|
713 |
+
|
714 |
elif data_path.endswith(".jsonl"):
|
715 |
df = pd.read_json(data_path, orient="records", lines=True)
|
716 |
if "index" in df.columns:
|
717 |
df = df.set_index("index")
|
718 |
return df
|
719 |
+
|
720 |
else:
|
721 |
with open(data_path, "r") as f:
|
722 |
data = f.read()
|
|
|
726 |
return data
|
727 |
|
728 |
|
|
|
729 |
if __name__ == "__main__":
|
730 |
+
print("Refreshing leaderboard statistics...")
|
731 |
all_data_tasks, boards_data = refresh_leaderboard()
|
732 |
+
print("Done calculating, saving...")
|
733 |
# save them so that the leaderboard can use them. They're quite complex though
|
734 |
+
# but we can't use pickle files because of git-lfs.
|
735 |
write_out_results(all_data_tasks, "all_data_tasks")
|
736 |
write_out_results(boards_data, "boards_data")
|
737 |
|
738 |
# to load them use
|
739 |
# all_data_tasks = load_results("all_data_tasks")
|
740 |
# boards_data = load_results("boards_data")
|
741 |
+
print("Done saving results!")
|