Muennighoff commited on
Commit
78db81b
·
1 Parent(s): a479746
Files changed (1) hide show
  1. app.py +38 -5
app.py CHANGED
@@ -2,9 +2,19 @@ import gradio as gr
2
  import requests
3
  import pandas as pd
4
  from huggingface_hub.hf_api import SpaceInfo
 
 
 
5
  path = f"https://huggingface.co/api/spaces"
6
 
7
 
 
 
 
 
 
 
 
8
  def get_blocks_party_spaces():
9
  r = requests.get(path)
10
  d = r.json()
@@ -18,6 +28,27 @@ def get_blocks_party_spaces():
18
  df = df.sort_values(by=['likes'],ascending=False)
19
  return df
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  block = gr.Blocks()
22
 
23
  with block:
@@ -25,19 +56,21 @@ with block:
25
  with gr.Tabs():
26
  with gr.TabItem("Blocks Party Leaderboard"):
27
  with gr.Row():
28
- data = gr.outputs.Dataframe(type="pandas")
29
  with gr.Row():
30
  data_run = gr.Button("Refresh")
31
  data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
32
- with gr.TabItem("Blocks Party Leaderboard"):
33
  with gr.Row():
34
- data = gr.outputs.Dataframe(type="pandas")
 
 
35
  with gr.Row():
36
  data_run = gr.Button("Refresh")
37
- data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
38
  with gr.TabItem("Blocks Party Leaderboard2"):
39
  with gr.Row():
40
- data = gr.outputs.Dataframe(type="pandas")
41
  with gr.Row():
42
  data_run = gr.Button("Refresh")
43
  data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
 
2
  import requests
3
  import pandas as pd
4
  from huggingface_hub.hf_api import SpaceInfo
5
+ from huggingface_hub import HfApi, hf_hub_download
6
+ from huggingface_hub.repocard import metadata_load
7
+
8
  path = f"https://huggingface.co/api/spaces"
9
 
10
 
11
+ #api = HfApi()
12
+ #models = api.list_models(filter="mteb")
13
+ #readme_path = hf_hub_download(models[0].modelId, filename="README.md")
14
+ #meta = metadata_load(readme_path)
15
+ #list(filter(lambda x: x["task"]["type"] == "Retrieval", meta["model-index"][0]["results"]))
16
+
17
+
18
  def get_blocks_party_spaces():
19
  r = requests.get(path)
20
  d = r.json()
 
28
  df = df.sort_values(by=['likes'],ascending=False)
29
  return df
30
 
31
+ def get_clustering(task="Clustering", metric="v_measure"):
32
+ api = HfApi()
33
+ models = api.list_models(filter="mteb")
34
+ df_list = []
35
+ for model in models:
36
+ readme_path = hf_hub_download(model.modelId, filename="README.md")
37
+ meta = metadata_load(readme_path)
38
+ out = list(
39
+ map(
40
+ lambda x: {x["dataset"]["name"]: list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"]},
41
+ filter(lambda x: x["task"]["type"] == task, meta["model-index"][0]["results"])
42
+ )
43
+ )
44
+ out = {k: v for d in out for k, v in d.items()}
45
+ out["Model"] = model.modelId
46
+ df_list.append(out)
47
+ df = pd.DataFrame(df_list)
48
+ # Put Model in the beginning & sort the others
49
+ df = df[[df.columns[-1]] + sorted(df.columns[:-1])]
50
+ return df
51
+
52
  block = gr.Blocks()
53
 
54
  with block:
 
56
  with gr.Tabs():
57
  with gr.TabItem("Blocks Party Leaderboard"):
58
  with gr.Row():
59
+ data = gr.components.Dataframe(type="pandas")
60
  with gr.Row():
61
  data_run = gr.Button("Refresh")
62
  data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
63
+ with gr.TabItem("Clustering"):
64
  with gr.Row():
65
+ gr.Markdown("""Leaderboard for Clustering""")
66
+ with gr.Row():
67
+ data = gr.components.Dataframe(type="pandas")
68
  with gr.Row():
69
  data_run = gr.Button("Refresh")
70
+ data_run.click(get_clustering, inputs=None, outputs=data)
71
  with gr.TabItem("Blocks Party Leaderboard2"):
72
  with gr.Row():
73
+ data = gr.components.Dataframe(type="pandas")
74
  with gr.Row():
75
  data_run = gr.Button("Refresh")
76
  data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)