Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Muennighoff
commited on
Commit
·
556c58e
1
Parent(s):
a1e84d6
Add C-MTEB
Browse files
app.py
CHANGED
@@ -66,7 +66,19 @@ TASK_LIST_CLASSIFICATION_SV = [
|
|
66 |
"SweRecClassification",
|
67 |
]
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
TASK_LIST_CLUSTERING = [
|
72 |
"ArxivClusteringP2P",
|
@@ -90,12 +102,24 @@ TASK_LIST_CLUSTERING_DE = [
|
|
90 |
"TenKGnadClusteringS2S",
|
91 |
]
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
TASK_LIST_PAIR_CLASSIFICATION = [
|
94 |
"SprintDuplicateQuestions",
|
95 |
"TwitterSemEval2015",
|
96 |
"TwitterURLCorpus",
|
97 |
]
|
98 |
|
|
|
|
|
|
|
|
|
|
|
99 |
TASK_LIST_RERANKING = [
|
100 |
"AskUbuntuDupQuestions",
|
101 |
"MindSmallReranking",
|
@@ -103,6 +127,13 @@ TASK_LIST_RERANKING = [
|
|
103 |
"StackOverflowDupQuestions",
|
104 |
]
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
TASK_LIST_RETRIEVAL = [
|
107 |
"ArguAna",
|
108 |
"ClimateFEVER",
|
@@ -124,7 +155,7 @@ TASK_LIST_RETRIEVAL = [
|
|
124 |
TASK_LIST_RETRIEVAL_PL = [
|
125 |
"ArguAna-PL",
|
126 |
"DBPedia-PL",
|
127 |
-
"
|
128 |
"HotpotQA-PL",
|
129 |
"MSMARCO-PL",
|
130 |
"NFCorpus-PL",
|
@@ -135,6 +166,17 @@ TASK_LIST_RETRIEVAL_PL = [
|
|
135 |
"TRECCOVID-PL",
|
136 |
]
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
139 |
"CQADupstackAndroidRetrieval",
|
140 |
"CQADupstackEnglishRetrieval",
|
@@ -163,13 +205,24 @@ TASK_LIST_STS = [
|
|
163 |
"STSBenchmark",
|
164 |
]
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
TASK_LIST_STS_NORM = [x.replace(" (en)", "").replace(" (en-en)", "") for x in TASK_LIST_STS]
|
167 |
|
168 |
-
TASK_LIST_SUMMARIZATION = [
|
169 |
-
"SummEval",
|
170 |
-
]
|
171 |
|
172 |
TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
|
|
|
173 |
|
174 |
TASK_TO_METRIC = {
|
175 |
"BitextMining": "f1",
|
@@ -198,6 +251,10 @@ EXTERNAL_MODELS = [
|
|
198 |
"allenai-specter",
|
199 |
"bert-base-swedish-cased",
|
200 |
"bert-base-uncased",
|
|
|
|
|
|
|
|
|
201 |
"contriever-base-msmarco",
|
202 |
"cross-en-de-roberta-sentence-transformer",
|
203 |
"dfm-encoder-large-v1",
|
@@ -220,8 +277,11 @@ EXTERNAL_MODELS = [
|
|
220 |
"gtr-t5-xl",
|
221 |
"gtr-t5-xxl",
|
222 |
"komninos",
|
|
|
223 |
"LASER2",
|
224 |
-
"LaBSE",
|
|
|
|
|
225 |
"msmarco-bert-co-condensor",
|
226 |
"multilingual-e5-base",
|
227 |
"multilingual-e5-large",
|
@@ -238,6 +298,8 @@ EXTERNAL_MODELS = [
|
|
238 |
"sentence-t5-xl",
|
239 |
"sentence-t5-xxl",
|
240 |
"sup-simcse-bert-base-uncased",
|
|
|
|
|
241 |
"text-embedding-ada-002",
|
242 |
"text-similarity-ada-001",
|
243 |
"text-similarity-babbage-001",
|
@@ -262,6 +324,10 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
262 |
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
263 |
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
264 |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
|
|
|
|
|
|
|
|
265 |
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
266 |
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
267 |
"DanskBERT": "https://huggingface.co/vesteinn/DanskBERT",
|
@@ -284,8 +350,11 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
284 |
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
285 |
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
286 |
"komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
|
|
|
287 |
"LASER2": "https://github.com/facebookresearch/LASER",
|
288 |
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
|
|
|
|
289 |
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
290 |
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
291 |
"multilingual-e5-large": "https://huggingface.co/intfloat/multilingual-e5-large",
|
@@ -302,6 +371,8 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
302 |
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
303 |
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
304 |
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
|
|
|
|
305 |
"text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
306 |
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
307 |
"text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
@@ -326,6 +397,10 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
326 |
"allenai-specter": 768,
|
327 |
"bert-base-swedish-cased": 768,
|
328 |
"bert-base-uncased": 768,
|
|
|
|
|
|
|
|
|
329 |
"contriever-base-msmarco": 768,
|
330 |
"cross-en-de-roberta-sentence-transformer": 768,
|
331 |
"DanskBERT": 768,
|
@@ -337,6 +412,7 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
337 |
"e5-large": 1024,
|
338 |
"electra-small-nordic": 256,
|
339 |
"electra-small-swedish-cased-discriminator": 256,
|
|
|
340 |
"LASER2": 1024,
|
341 |
"LaBSE": 768,
|
342 |
"gbert-base": 768,
|
@@ -350,6 +426,8 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
350 |
"gtr-t5-xl": 768,
|
351 |
"gtr-t5-xxl": 768,
|
352 |
"komninos": 300,
|
|
|
|
|
353 |
"msmarco-bert-co-condensor": 768,
|
354 |
"multilingual-e5-base": 768,
|
355 |
"multilingual-e5-small": 384,
|
@@ -366,8 +444,8 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
366 |
"sentence-t5-xl": 768,
|
367 |
"sentence-t5-xxl": 768,
|
368 |
"sup-simcse-bert-base-uncased": 768,
|
369 |
-
"
|
370 |
-
"
|
371 |
"text-embedding-ada-002": 1536,
|
372 |
"text-similarity-ada-001": 1024,
|
373 |
"text-similarity-babbage-001": 2048,
|
@@ -379,11 +457,12 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
379 |
"text-search-babbage-001": 2048,
|
380 |
"text-search-curie-001": 4096,
|
381 |
"text-search-davinci-001": 12288,
|
|
|
|
|
382 |
"xlm-roberta-base": 768,
|
383 |
"xlm-roberta-large": 1024,
|
384 |
}
|
385 |
|
386 |
-
|
387 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
388 |
"all-MiniLM-L12-v2": 512,
|
389 |
"all-MiniLM-L6-v2": 512,
|
@@ -391,6 +470,10 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
391 |
"allenai-specter": 512,
|
392 |
"bert-base-swedish-cased": 512,
|
393 |
"bert-base-uncased": 512,
|
|
|
|
|
|
|
|
|
394 |
"contriever-base-msmarco": 512,
|
395 |
"cross-en-de-roberta-sentence-transformer": 514,
|
396 |
"DanskBERT": 514,
|
@@ -413,8 +496,11 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
413 |
"gtr-t5-xl": 512,
|
414 |
"gtr-t5-xxl": 512,
|
415 |
"komninos": "N/A",
|
|
|
416 |
"LASER2": "N/A",
|
417 |
-
"LaBSE": 512,
|
|
|
|
|
418 |
"msmarco-bert-co-condensor": 512,
|
419 |
"multilingual-e5-base": 514,
|
420 |
"multilingual-e5-large": 514,
|
@@ -431,6 +517,8 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
431 |
"sentence-t5-xl": 512,
|
432 |
"sentence-t5-xxl": 512,
|
433 |
"sup-simcse-bert-base-uncased": 512,
|
|
|
|
|
434 |
"text-embedding-ada-002": 8191,
|
435 |
"text-similarity-ada-001": 2046,
|
436 |
"text-similarity-babbage-001": 2046,
|
@@ -455,6 +543,10 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
455 |
"all-mpnet-base-v2": 0.44,
|
456 |
"bert-base-uncased": 0.44,
|
457 |
"bert-base-swedish-cased": 0.50,
|
|
|
|
|
|
|
|
|
458 |
"cross-en-de-roberta-sentence-transformer": 1.11,
|
459 |
"contriever-base-msmarco": 0.44,
|
460 |
"DanskBERT": 0.50,
|
@@ -477,8 +569,11 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
477 |
"gtr-t5-xl": 2.48,
|
478 |
"gtr-t5-xxl": 9.73,
|
479 |
"komninos": 0.27,
|
|
|
480 |
"LASER2": 0.17,
|
481 |
"LaBSE": 1.88,
|
|
|
|
|
482 |
"msmarco-bert-co-condensor": 0.44,
|
483 |
"multilingual-e5-base": 1.11,
|
484 |
"multilingual-e5-small": 0.47,
|
@@ -495,6 +590,8 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
495 |
"sentence-t5-xl": 2.48,
|
496 |
"sentence-t5-xxl": 9.73,
|
497 |
"sup-simcse-bert-base-uncased": 0.44,
|
|
|
|
|
498 |
"unsup-simcse-bert-base-uncased": 0.44,
|
499 |
"use-cmlm-multilingual": 1.89,
|
500 |
"xlm-roberta-base": 1.12,
|
@@ -523,9 +620,9 @@ MODELS_TO_SKIP = {
|
|
523 |
"newsrx/instructor-xl",
|
524 |
"dmlls/all-mpnet-base-v2",
|
525 |
"cgldo/semanticClone",
|
|
|
526 |
}
|
527 |
|
528 |
-
|
529 |
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
530 |
|
531 |
def add_lang(examples):
|
@@ -537,26 +634,29 @@ def add_lang(examples):
|
|
537 |
|
538 |
def add_task(examples):
|
539 |
# Could be added to the dataset loading script instead
|
540 |
-
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM + TASK_LIST_CLASSIFICATION_DA + TASK_LIST_CLASSIFICATION_SV + TASK_LIST_CLASSIFICATION_NB:
|
541 |
examples["mteb_task"] = "Classification"
|
542 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE:
|
543 |
examples["mteb_task"] = "Clustering"
|
544 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_PAIR_CLASSIFICATION:
|
545 |
examples["mteb_task"] = "PairClassification"
|
546 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_RERANKING:
|
547 |
examples["mteb_task"] = "Reranking"
|
548 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_PL:
|
549 |
examples["mteb_task"] = "Retrieval"
|
550 |
-
elif examples["mteb_dataset_name"] in TASK_LIST_STS_NORM:
|
551 |
examples["mteb_task"] = "STS"
|
552 |
elif examples["mteb_dataset_name"] in TASK_LIST_SUMMARIZATION:
|
553 |
examples["mteb_task"] = "Summarization"
|
554 |
-
|
555 |
examples["mteb_task"] = "BitextMining"
|
|
|
|
|
|
|
556 |
return examples
|
557 |
|
558 |
for model in EXTERNAL_MODELS:
|
559 |
-
ds = load_dataset("mteb/results", model)
|
560 |
# For local debugging:
|
561 |
#, download_mode='force_redownload', verification_mode="no_checks")
|
562 |
ds = ds.map(add_lang)
|
@@ -609,7 +709,6 @@ def make_datasets_clickable(df):
|
|
609 |
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
|
610 |
return df
|
611 |
|
612 |
-
|
613 |
def add_rank(df):
|
614 |
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length"]]
|
615 |
if len(cols_to_rank) == 1:
|
@@ -694,7 +793,7 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
694 |
return df
|
695 |
|
696 |
def get_mteb_average():
|
697 |
-
global DATA_OVERALL, DATA_CLASSIFICATION_EN, DATA_CLUSTERING, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS_EN, DATA_SUMMARIZATION
|
698 |
DATA_OVERALL = get_mteb_data(
|
699 |
tasks=[
|
700 |
"Classification",
|
@@ -705,7 +804,7 @@ def get_mteb_average():
|
|
705 |
"STS",
|
706 |
"Summarization",
|
707 |
],
|
708 |
-
|
709 |
fillna=False,
|
710 |
add_emb_dim=True,
|
711 |
rank=False,
|
@@ -728,36 +827,134 @@ def get_mteb_average():
|
|
728 |
DATA_OVERALL = DATA_OVERALL.round(2)
|
729 |
|
730 |
DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION])
|
|
|
|
|
|
|
731 |
DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING])
|
|
|
|
|
732 |
DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION])
|
|
|
|
|
733 |
DATA_RERANKING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RERANKING])
|
|
|
|
|
734 |
DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL])
|
|
|
|
|
735 |
DATA_STS_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_STS])
|
|
|
|
|
736 |
DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION])
|
|
|
737 |
|
738 |
# Fill NaN after averaging
|
739 |
DATA_OVERALL.fillna("", inplace=True)
|
740 |
|
741 |
DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
|
|
|
742 |
|
743 |
return DATA_OVERALL
|
744 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
745 |
get_mteb_average()
|
|
|
746 |
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
747 |
DATA_BITEXT_MINING_OTHER = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_OTHER)
|
748 |
DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
|
749 |
DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
|
750 |
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
751 |
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
|
752 |
-
|
753 |
DATA_RETRIEVAL_PL = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_PL)
|
754 |
-
|
755 |
|
756 |
# Exact, add all non-nan integer values for every dataset
|
757 |
NUM_SCORES = 0
|
758 |
DATASETS = []
|
|
|
759 |
# LANGUAGES = []
|
760 |
-
for d in [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
761 |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
762 |
cols_to_ignore = 3 if "Average" in d.columns else 2
|
763 |
# Count number of scores including only non-nan floats & excluding the rank column
|
@@ -765,9 +962,11 @@ for d in [DATA_BITEXT_MINING, DATA_BITEXT_MINING_OTHER, DATA_CLASSIFICATION_EN,
|
|
765 |
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
|
766 |
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
|
767 |
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
|
|
|
768 |
|
769 |
NUM_DATASETS = len(set(DATASETS))
|
770 |
# NUM_LANGUAGES = len(set(LANGUAGES))
|
|
|
771 |
|
772 |
block = gr.Blocks()
|
773 |
with block:
|
@@ -777,32 +976,52 @@ with block:
|
|
777 |
- **Total Datasets**: {NUM_DATASETS}
|
778 |
- **Total Languages**: 113
|
779 |
- **Total Scores**: {NUM_SCORES}
|
780 |
-
- **Total Models**: {
|
781 |
""")
|
782 |
with gr.Tabs():
|
783 |
with gr.TabItem("Overall"):
|
784 |
-
with gr.
|
785 |
-
gr.
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
801 |
with gr.TabItem("Bitext Mining"):
|
802 |
with gr.TabItem("English-X"):
|
803 |
with gr.Row():
|
804 |
gr.Markdown("""
|
805 |
-
**Bitext Mining Leaderboard 🎌**
|
806 |
|
807 |
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
808 |
- **Languages:** 117 (Pairs of: English & other language)
|
@@ -814,11 +1033,11 @@ with block:
|
|
814 |
type="pandas",
|
815 |
)
|
816 |
with gr.Row():
|
817 |
-
|
818 |
task_bitext_mining = gr.Variable(value=["BitextMining"])
|
819 |
lang_bitext_mining = gr.Variable(value=[])
|
820 |
datasets_bitext_mining = gr.Variable(value=TASK_LIST_BITEXT_MINING)
|
821 |
-
|
822 |
get_mteb_data,
|
823 |
inputs=[task_bitext_mining, lang_bitext_mining, datasets_bitext_mining],
|
824 |
outputs=data_bitext_mining,
|
@@ -839,11 +1058,11 @@ with block:
|
|
839 |
type="pandas",
|
840 |
)
|
841 |
with gr.Row():
|
842 |
-
|
843 |
task_bitext_mining_da = gr.Variable(value=["BitextMining"])
|
844 |
lang_bitext_mining_da = gr.Variable(value=[])
|
845 |
datasets_bitext_mining_da = gr.Variable(value=TASK_LIST_BITEXT_MINING_OTHER)
|
846 |
-
|
847 |
get_mteb_data,
|
848 |
inputs=[
|
849 |
task_bitext_mining_da,
|
@@ -856,7 +1075,7 @@ with block:
|
|
856 |
with gr.TabItem("English"):
|
857 |
with gr.Row():
|
858 |
gr.Markdown("""
|
859 |
-
**Classification Leaderboard ❤️**
|
860 |
|
861 |
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
862 |
- **Languages:** English
|
@@ -879,6 +1098,35 @@ with block:
|
|
879 |
],
|
880 |
outputs=data_classification_en,
|
881 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
882 |
with gr.TabItem("Danish"):
|
883 |
with gr.Row():
|
884 |
gr.Markdown("""
|
@@ -981,11 +1229,11 @@ with block:
|
|
981 |
type="pandas",
|
982 |
)
|
983 |
with gr.Row():
|
984 |
-
|
985 |
task_classification = gr.Variable(value=["Classification"])
|
986 |
lang_classification = gr.Variable(value=[])
|
987 |
datasets_classification = gr.Variable(value=TASK_LIST_CLASSIFICATION_OTHER)
|
988 |
-
|
989 |
get_mteb_data,
|
990 |
inputs=[
|
991 |
task_classification,
|
@@ -1010,15 +1258,40 @@ with block:
|
|
1010 |
type="pandas",
|
1011 |
)
|
1012 |
with gr.Row():
|
1013 |
-
|
1014 |
task_clustering = gr.Variable(value=["Clustering"])
|
1015 |
lang_clustering = gr.Variable(value=[])
|
1016 |
datasets_clustering = gr.Variable(value=TASK_LIST_CLUSTERING)
|
1017 |
-
|
1018 |
get_mteb_data,
|
1019 |
inputs=[task_clustering, lang_clustering, datasets_clustering],
|
1020 |
outputs=data_clustering,
|
1021 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1022 |
with gr.TabItem("German"):
|
1023 |
with gr.Row():
|
1024 |
gr.Markdown("""
|
@@ -1030,68 +1303,137 @@ with block:
|
|
1030 |
""")
|
1031 |
with gr.Row():
|
1032 |
data_clustering_de = gr.components.Dataframe(
|
1033 |
-
|
1034 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1035 |
type="pandas",
|
1036 |
)
|
1037 |
with gr.Row():
|
1038 |
-
|
1039 |
task_clustering_de = gr.Variable(value=["Clustering"])
|
1040 |
lang_clustering_de = gr.Variable(value=[])
|
1041 |
datasets_clustering_de = gr.Variable(value=TASK_LIST_CLUSTERING_DE)
|
1042 |
-
|
1043 |
get_mteb_data,
|
1044 |
inputs=[task_clustering_de, lang_clustering_de, datasets_clustering_de],
|
1045 |
outputs=data_clustering_de,
|
1046 |
)
|
1047 |
with gr.TabItem("Pair Classification"):
|
1048 |
-
with gr.
|
1049 |
-
gr.
|
1050 |
-
|
1051 |
-
|
1052 |
-
|
1053 |
-
|
1054 |
-
|
1055 |
-
|
1056 |
-
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
|
1066 |
-
|
1067 |
-
|
1068 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1069 |
with gr.TabItem("Reranking"):
|
1070 |
-
with gr.
|
1071 |
-
gr.
|
1072 |
-
|
1073 |
-
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
|
1088 |
-
|
1089 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1090 |
with gr.TabItem("Retrieval"):
|
1091 |
with gr.TabItem("English"):
|
1092 |
with gr.Row():
|
1093 |
gr.Markdown("""
|
1094 |
-
**Retrieval Leaderboard
|
1095 |
|
1096 |
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
1097 |
- **Languages:** English
|
@@ -1104,10 +1446,44 @@ with block:
|
|
1104 |
type="pandas",
|
1105 |
)
|
1106 |
with gr.Row():
|
1107 |
-
|
1108 |
task_retrieval = gr.Variable(value=["Retrieval"])
|
1109 |
-
|
1110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1111 |
)
|
1112 |
with gr.TabItem("Polish"):
|
1113 |
with gr.Row():
|
@@ -1126,11 +1502,11 @@ with block:
|
|
1126 |
type="pandas",
|
1127 |
)
|
1128 |
with gr.Row():
|
1129 |
-
|
1130 |
task_retrieval_pl = gr.Variable(value=["Retrieval"])
|
1131 |
lang_retrieval_pl = gr.Variable(value=[])
|
1132 |
datasets_retrieval_pl = gr.Variable(value=TASK_LIST_RETRIEVAL_PL)
|
1133 |
-
|
1134 |
get_mteb_data,
|
1135 |
inputs=[task_retrieval_pl, lang_retrieval_pl, datasets_retrieval_pl],
|
1136 |
outputs=data_retrieval_pl
|
@@ -1139,7 +1515,7 @@ with block:
|
|
1139 |
with gr.TabItem("English"):
|
1140 |
with gr.Row():
|
1141 |
gr.Markdown("""
|
1142 |
-
**STS Leaderboard 🤖**
|
1143 |
|
1144 |
- **Metric:** Spearman correlation based on cosine similarity
|
1145 |
- **Languages:** English
|
@@ -1153,30 +1529,62 @@ with block:
|
|
1153 |
with gr.Row():
|
1154 |
data_run_sts_en = gr.Button("Refresh")
|
1155 |
task_sts_en = gr.Variable(value=["STS"])
|
1156 |
-
lang_sts_en = gr.Variable(value=[
|
|
|
1157 |
data_run_sts_en.click(
|
1158 |
get_mteb_data,
|
1159 |
-
inputs=[task_sts_en, lang_sts_en],
|
1160 |
outputs=data_sts_en,
|
1161 |
)
|
1162 |
-
with gr.TabItem("
|
1163 |
with gr.Row():
|
1164 |
gr.Markdown("""
|
1165 |
-
**STS
|
1166 |
|
1167 |
- **Metric:** Spearman correlation based on cosine similarity
|
1168 |
-
- **Languages:**
|
|
|
1169 |
""")
|
1170 |
with gr.Row():
|
1171 |
-
|
1172 |
-
|
1173 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
1174 |
type="pandas",
|
1175 |
)
|
1176 |
with gr.Row():
|
1177 |
-
|
1178 |
-
|
1179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1180 |
with gr.TabItem("Summarization"):
|
1181 |
with gr.Row():
|
1182 |
gr.Markdown("""
|
|
|
66 |
"SweRecClassification",
|
67 |
]
|
68 |
|
69 |
+
TASK_LIST_CLASSIFICATION_ZH = [
|
70 |
+
"AmazonReviewsClassification (zh)",
|
71 |
+
"IFlyTek",
|
72 |
+
"JDReview",
|
73 |
+
"MassiveIntentClassification (zh-CN)",
|
74 |
+
"MassiveScenarioClassification (zh-CN)",
|
75 |
+
"MultilingualSentiment",
|
76 |
+
"OnlineShopping",
|
77 |
+
"TNews",
|
78 |
+
"Waimai",
|
79 |
+
]
|
80 |
+
|
81 |
+
TASK_LIST_CLASSIFICATION_OTHER = ['AmazonCounterfactualClassification (de)', 'AmazonCounterfactualClassification (ja)', 'AmazonReviewsClassification (de)', 'AmazonReviewsClassification (es)', 'AmazonReviewsClassification (fr)', 'AmazonReviewsClassification (ja)', 'AmazonReviewsClassification (zh)', 'MTOPDomainClassification (de)', 'MTOPDomainClassification (es)', 'MTOPDomainClassification (fr)', 'MTOPDomainClassification (hi)', 'MTOPDomainClassification (th)', 'MTOPIntentClassification (de)', 'MTOPIntentClassification (es)', 'MTOPIntentClassification (fr)', 'MTOPIntentClassification (hi)', 'MTOPIntentClassification (th)', 'MassiveIntentClassification (af)', 'MassiveIntentClassification (am)', 'MassiveIntentClassification (ar)', 'MassiveIntentClassification (az)', 'MassiveIntentClassification (bn)', 'MassiveIntentClassification (cy)', 'MassiveIntentClassification (de)', 'MassiveIntentClassification (el)', 'MassiveIntentClassification (es)', 'MassiveIntentClassification (fa)', 'MassiveIntentClassification (fi)', 'MassiveIntentClassification (fr)', 'MassiveIntentClassification (he)', 'MassiveIntentClassification (hi)', 'MassiveIntentClassification (hu)', 'MassiveIntentClassification (hy)', 'MassiveIntentClassification (id)', 'MassiveIntentClassification (is)', 'MassiveIntentClassification (it)', 'MassiveIntentClassification (ja)', 'MassiveIntentClassification (jv)', 'MassiveIntentClassification (ka)', 'MassiveIntentClassification (km)', 'MassiveIntentClassification (kn)', 'MassiveIntentClassification (ko)', 'MassiveIntentClassification (lv)', 'MassiveIntentClassification (ml)', 'MassiveIntentClassification (mn)', 'MassiveIntentClassification (ms)', 'MassiveIntentClassification (my)', 'MassiveIntentClassification (nl)', 'MassiveIntentClassification (pl)', 'MassiveIntentClassification (pt)', 'MassiveIntentClassification (ro)', 'MassiveIntentClassification (ru)', 'MassiveIntentClassification (sl)', 'MassiveIntentClassification (sq)', 'MassiveIntentClassification (sw)', 'MassiveIntentClassification (ta)', 'MassiveIntentClassification (te)', 'MassiveIntentClassification (th)', 'MassiveIntentClassification (tl)', 'MassiveIntentClassification (tr)', 'MassiveIntentClassification (ur)', 'MassiveIntentClassification (vi)', 'MassiveIntentClassification (zh-TW)', 'MassiveScenarioClassification (af)', 'MassiveScenarioClassification (am)', 'MassiveScenarioClassification (ar)', 'MassiveScenarioClassification (az)', 'MassiveScenarioClassification (bn)', 'MassiveScenarioClassification (cy)', 'MassiveScenarioClassification (de)', 'MassiveScenarioClassification (el)', 'MassiveScenarioClassification (es)', 'MassiveScenarioClassification (fa)', 'MassiveScenarioClassification (fi)', 'MassiveScenarioClassification (fr)', 'MassiveScenarioClassification (he)', 'MassiveScenarioClassification (hi)', 'MassiveScenarioClassification (hu)', 'MassiveScenarioClassification (hy)', 'MassiveScenarioClassification (id)', 'MassiveScenarioClassification (is)', 'MassiveScenarioClassification (it)', 'MassiveScenarioClassification (ja)', 'MassiveScenarioClassification (jv)', 'MassiveScenarioClassification (ka)', 'MassiveScenarioClassification (km)', 'MassiveScenarioClassification (kn)', 'MassiveScenarioClassification (ko)', 'MassiveScenarioClassification (lv)', 'MassiveScenarioClassification (ml)', 'MassiveScenarioClassification (mn)', 'MassiveScenarioClassification (ms)', 'MassiveScenarioClassification (my)', 'MassiveScenarioClassification (nl)', 'MassiveScenarioClassification (pl)', 'MassiveScenarioClassification (pt)', 'MassiveScenarioClassification (ro)', 'MassiveScenarioClassification (ru)', 'MassiveScenarioClassification (sl)', 'MassiveScenarioClassification (sq)', 'MassiveScenarioClassification (sw)', 'MassiveScenarioClassification (ta)', 'MassiveScenarioClassification (te)', 'MassiveScenarioClassification (th)', 'MassiveScenarioClassification (tl)', 'MassiveScenarioClassification (tr)', 'MassiveScenarioClassification (ur)', 'MassiveScenarioClassification (vi)', 'MassiveScenarioClassification (zh-TW)']
|
82 |
|
83 |
TASK_LIST_CLUSTERING = [
|
84 |
"ArxivClusteringP2P",
|
|
|
102 |
"TenKGnadClusteringS2S",
|
103 |
]
|
104 |
|
105 |
+
TASK_LIST_CLUSTERING_ZH = [
|
106 |
+
"CLSClusteringP2P",
|
107 |
+
"CLSClusteringS2S",
|
108 |
+
"ThuNewsClusteringP2P",
|
109 |
+
"ThuNewsClusteringS2S",
|
110 |
+
]
|
111 |
+
|
112 |
TASK_LIST_PAIR_CLASSIFICATION = [
|
113 |
"SprintDuplicateQuestions",
|
114 |
"TwitterSemEval2015",
|
115 |
"TwitterURLCorpus",
|
116 |
]
|
117 |
|
118 |
+
TASK_LIST_PAIR_CLASSIFICATION_ZH = [
|
119 |
+
"Cmnli",
|
120 |
+
"Ocnli",
|
121 |
+
]
|
122 |
+
|
123 |
TASK_LIST_RERANKING = [
|
124 |
"AskUbuntuDupQuestions",
|
125 |
"MindSmallReranking",
|
|
|
127 |
"StackOverflowDupQuestions",
|
128 |
]
|
129 |
|
130 |
+
TASK_LIST_RERANKING_ZH = [
|
131 |
+
"CMedQAv1",
|
132 |
+
"CMedQAv2",
|
133 |
+
"MmarcoReranking",
|
134 |
+
"T2Reranking",
|
135 |
+
]
|
136 |
+
|
137 |
TASK_LIST_RETRIEVAL = [
|
138 |
"ArguAna",
|
139 |
"ClimateFEVER",
|
|
|
155 |
TASK_LIST_RETRIEVAL_PL = [
|
156 |
"ArguAna-PL",
|
157 |
"DBPedia-PL",
|
158 |
+
"FiQA-PL",
|
159 |
"HotpotQA-PL",
|
160 |
"MSMARCO-PL",
|
161 |
"NFCorpus-PL",
|
|
|
166 |
"TRECCOVID-PL",
|
167 |
]
|
168 |
|
169 |
+
TASK_LIST_RETRIEVAL_ZH = [
|
170 |
+
"CmedqaRetrieval",
|
171 |
+
"CovidRetrieval",
|
172 |
+
"DuRetrieval",
|
173 |
+
"EcomRetrieval",
|
174 |
+
"MedicalRetrieval",
|
175 |
+
"MMarcoRetrieval",
|
176 |
+
"T2Retrieval",
|
177 |
+
"VideoRetrieval",
|
178 |
+
]
|
179 |
+
|
180 |
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
181 |
"CQADupstackAndroidRetrieval",
|
182 |
"CQADupstackEnglishRetrieval",
|
|
|
205 |
"STSBenchmark",
|
206 |
]
|
207 |
|
208 |
+
TASK_LIST_STS_ZH = [
|
209 |
+
"AFQMC",
|
210 |
+
"ATEC",
|
211 |
+
"BQ",
|
212 |
+
"LCQMC",
|
213 |
+
"PAWSX",
|
214 |
+
"QBQTC",
|
215 |
+
"STS22 (zh)",
|
216 |
+
"STSB",
|
217 |
+
]
|
218 |
+
|
219 |
+
TASK_LIST_STS_OTHER = ["STS17 (ar-ar)", "STS17 (en-ar)", "STS17 (en-de)", "STS17 (en-tr)", "STS17 (es-en)", "STS17 (es-es)", "STS17 (fr-en)", "STS17 (it-en)", "STS17 (ko-ko)", "STS17 (nl-en)", "STS22 (ar)", "STS22 (de)", "STS22 (de-en)", "STS22 (de-fr)", "STS22 (de-pl)", "STS22 (es)", "STS22 (es-en)", "STS22 (es-it)", "STS22 (fr)", "STS22 (fr-pl)", "STS22 (it)", "STS22 (pl)", "STS22 (pl-en)", "STS22 (ru)", "STS22 (tr)", "STS22 (zh-en)", "STSBenchmark",]
|
220 |
TASK_LIST_STS_NORM = [x.replace(" (en)", "").replace(" (en-en)", "") for x in TASK_LIST_STS]
|
221 |
|
222 |
+
TASK_LIST_SUMMARIZATION = ["SummEval",]
|
|
|
|
|
223 |
|
224 |
TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION
|
225 |
+
TASK_LIST_ZH = TASK_LIST_CLASSIFICATION_ZH + TASK_LIST_CLUSTERING_ZH + TASK_LIST_PAIR_CLASSIFICATION_ZH + TASK_LIST_RERANKING_ZH + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_STS_ZH
|
226 |
|
227 |
TASK_TO_METRIC = {
|
228 |
"BitextMining": "f1",
|
|
|
251 |
"allenai-specter",
|
252 |
"bert-base-swedish-cased",
|
253 |
"bert-base-uncased",
|
254 |
+
"bge-base-zh",
|
255 |
+
"bge-large-zh",
|
256 |
+
"bge-large-zh-noinstruct",
|
257 |
+
"bge-small-zh",
|
258 |
"contriever-base-msmarco",
|
259 |
"cross-en-de-roberta-sentence-transformer",
|
260 |
"dfm-encoder-large-v1",
|
|
|
277 |
"gtr-t5-xl",
|
278 |
"gtr-t5-xxl",
|
279 |
"komninos",
|
280 |
+
"luotuo-bert-medium",
|
281 |
"LASER2",
|
282 |
+
"LaBSE",
|
283 |
+
"m3e-base",
|
284 |
+
"m3e-large",
|
285 |
"msmarco-bert-co-condensor",
|
286 |
"multilingual-e5-base",
|
287 |
"multilingual-e5-large",
|
|
|
298 |
"sentence-t5-xl",
|
299 |
"sentence-t5-xxl",
|
300 |
"sup-simcse-bert-base-uncased",
|
301 |
+
"text2vec-base-chinese",
|
302 |
+
"text2vec-large-chinese",
|
303 |
"text-embedding-ada-002",
|
304 |
"text-similarity-ada-001",
|
305 |
"text-similarity-babbage-001",
|
|
|
324 |
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
325 |
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
326 |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
327 |
+
"bge-base-zh": "https://huggingface.co/BAAI/bge-base-zh",
|
328 |
+
"bge-large-zh": "https://huggingface.co/BAAI/bge-large-zh",
|
329 |
+
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
330 |
+
"bge-small-zh": "https://huggingface.co/BAAI/bge-small-zh",
|
331 |
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
332 |
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
333 |
"DanskBERT": "https://huggingface.co/vesteinn/DanskBERT",
|
|
|
350 |
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
351 |
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
352 |
"komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
|
353 |
+
"luotuo-bert-medium": "https://huggingface.co/silk-road/luotuo-bert-medium",
|
354 |
"LASER2": "https://github.com/facebookresearch/LASER",
|
355 |
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
356 |
+
"m3e-base": "https://huggingface.co/moka-ai/m3e-base",
|
357 |
+
"m3e-large": "https://huggingface.co/moka-ai/m3e-large",
|
358 |
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
359 |
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
360 |
"multilingual-e5-large": "https://huggingface.co/intfloat/multilingual-e5-large",
|
|
|
371 |
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
372 |
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
373 |
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
374 |
+
"text2vec-base-chinese": "https://huggingface.co/shibing624/text2vec-base-chinese",
|
375 |
+
"text2vec-large-chinese": "https://huggingface.co/GanymedeNil/text2vec-large-chinese",
|
376 |
"text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
377 |
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
378 |
"text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
|
|
397 |
"allenai-specter": 768,
|
398 |
"bert-base-swedish-cased": 768,
|
399 |
"bert-base-uncased": 768,
|
400 |
+
"bge-base-zh": 768,
|
401 |
+
"bge-large-zh": 1024,
|
402 |
+
"bge-large-zh-noinstruct": 1024,
|
403 |
+
"bge-small-zh": 512,
|
404 |
"contriever-base-msmarco": 768,
|
405 |
"cross-en-de-roberta-sentence-transformer": 768,
|
406 |
"DanskBERT": 768,
|
|
|
412 |
"e5-large": 1024,
|
413 |
"electra-small-nordic": 256,
|
414 |
"electra-small-swedish-cased-discriminator": 256,
|
415 |
+
"luotuo-bert-medium": 768,
|
416 |
"LASER2": 1024,
|
417 |
"LaBSE": 768,
|
418 |
"gbert-base": 768,
|
|
|
426 |
"gtr-t5-xl": 768,
|
427 |
"gtr-t5-xxl": 768,
|
428 |
"komninos": 300,
|
429 |
+
"m3e-base": 768,
|
430 |
+
"m3e-large": 768,
|
431 |
"msmarco-bert-co-condensor": 768,
|
432 |
"multilingual-e5-base": 768,
|
433 |
"multilingual-e5-small": 384,
|
|
|
444 |
"sentence-t5-xl": 768,
|
445 |
"sentence-t5-xxl": 768,
|
446 |
"sup-simcse-bert-base-uncased": 768,
|
447 |
+
"text2vec-base-chinese": 768,
|
448 |
+
"text2vec-large-chinese": 1024,
|
449 |
"text-embedding-ada-002": 1536,
|
450 |
"text-similarity-ada-001": 1024,
|
451 |
"text-similarity-babbage-001": 2048,
|
|
|
457 |
"text-search-babbage-001": 2048,
|
458 |
"text-search-curie-001": 4096,
|
459 |
"text-search-davinci-001": 12288,
|
460 |
+
"unsup-simcse-bert-base-uncased": 768,
|
461 |
+
"use-cmlm-multilingual": 768,
|
462 |
"xlm-roberta-base": 768,
|
463 |
"xlm-roberta-large": 1024,
|
464 |
}
|
465 |
|
|
|
466 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
467 |
"all-MiniLM-L12-v2": 512,
|
468 |
"all-MiniLM-L6-v2": 512,
|
|
|
470 |
"allenai-specter": 512,
|
471 |
"bert-base-swedish-cased": 512,
|
472 |
"bert-base-uncased": 512,
|
473 |
+
"bge-base-zh": 512,
|
474 |
+
"bge-large-zh": 512,
|
475 |
+
"bge-large-zh-noinstruct": 512,
|
476 |
+
"bge-small-zh": 512,
|
477 |
"contriever-base-msmarco": 512,
|
478 |
"cross-en-de-roberta-sentence-transformer": 514,
|
479 |
"DanskBERT": 514,
|
|
|
496 |
"gtr-t5-xl": 512,
|
497 |
"gtr-t5-xxl": 512,
|
498 |
"komninos": "N/A",
|
499 |
+
"luotuo-bert-medium": 512,
|
500 |
"LASER2": "N/A",
|
501 |
+
"LaBSE": 512,
|
502 |
+
"m3e-base": 512,
|
503 |
+
"m3e-large": 512,
|
504 |
"msmarco-bert-co-condensor": 512,
|
505 |
"multilingual-e5-base": 514,
|
506 |
"multilingual-e5-large": 514,
|
|
|
517 |
"sentence-t5-xl": 512,
|
518 |
"sentence-t5-xxl": 512,
|
519 |
"sup-simcse-bert-base-uncased": 512,
|
520 |
+
"text2vec-base-chinese": 512,
|
521 |
+
"text2vec-large-chinese": 512,
|
522 |
"text-embedding-ada-002": 8191,
|
523 |
"text-similarity-ada-001": 2046,
|
524 |
"text-similarity-babbage-001": 2046,
|
|
|
543 |
"all-mpnet-base-v2": 0.44,
|
544 |
"bert-base-uncased": 0.44,
|
545 |
"bert-base-swedish-cased": 0.50,
|
546 |
+
"bge-base-zh": 0.41,
|
547 |
+
"bge-large-zh": 1.30,
|
548 |
+
"bge-large-zh-noinstruct": 1.30,
|
549 |
+
"bge-small-zh": 0.10,
|
550 |
"cross-en-de-roberta-sentence-transformer": 1.11,
|
551 |
"contriever-base-msmarco": 0.44,
|
552 |
"DanskBERT": 0.50,
|
|
|
569 |
"gtr-t5-xl": 2.48,
|
570 |
"gtr-t5-xxl": 9.73,
|
571 |
"komninos": 0.27,
|
572 |
+
"luotuo-bert-medium": 1.31,
|
573 |
"LASER2": 0.17,
|
574 |
"LaBSE": 1.88,
|
575 |
+
"m3e-base": 0.41,
|
576 |
+
"m3e-large": 0.41,
|
577 |
"msmarco-bert-co-condensor": 0.44,
|
578 |
"multilingual-e5-base": 1.11,
|
579 |
"multilingual-e5-small": 0.47,
|
|
|
590 |
"sentence-t5-xl": 2.48,
|
591 |
"sentence-t5-xxl": 9.73,
|
592 |
"sup-simcse-bert-base-uncased": 0.44,
|
593 |
+
"text2vec-base-chinese": 0.41,
|
594 |
+
"text2vec-large-chinese": 1.30,
|
595 |
"unsup-simcse-bert-base-uncased": 0.44,
|
596 |
"use-cmlm-multilingual": 1.89,
|
597 |
"xlm-roberta-base": 1.12,
|
|
|
620 |
"newsrx/instructor-xl",
|
621 |
"dmlls/all-mpnet-base-v2",
|
622 |
"cgldo/semanticClone",
|
623 |
+
"Malmuk1/e5-large-v2_Sharded",
|
624 |
}
|
625 |
|
|
|
626 |
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
627 |
|
628 |
def add_lang(examples):
|
|
|
634 |
|
635 |
def add_task(examples):
|
636 |
# Could be added to the dataset loading script instead
|
637 |
+
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM + TASK_LIST_CLASSIFICATION_DA + TASK_LIST_CLASSIFICATION_SV + TASK_LIST_CLASSIFICATION_NB + TASK_LIST_CLASSIFICATION_ZH:
|
638 |
examples["mteb_task"] = "Classification"
|
639 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE + TASK_LIST_CLUSTERING_ZH:
|
640 |
examples["mteb_task"] = "Clustering"
|
641 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_PAIR_CLASSIFICATION_ZH:
|
642 |
examples["mteb_task"] = "PairClassification"
|
643 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_RERANKING + TASK_LIST_RERANKING_ZH:
|
644 |
examples["mteb_task"] = "Reranking"
|
645 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_PL + TASK_LIST_RETRIEVAL_ZH:
|
646 |
examples["mteb_task"] = "Retrieval"
|
647 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_STS_NORM + TASK_LIST_STS_ZH:
|
648 |
examples["mteb_task"] = "STS"
|
649 |
elif examples["mteb_dataset_name"] in TASK_LIST_SUMMARIZATION:
|
650 |
examples["mteb_task"] = "Summarization"
|
651 |
+
elif examples["mteb_dataset_name"] in [x.split(" ")[0] for x in TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_OTHER]:
|
652 |
examples["mteb_task"] = "BitextMining"
|
653 |
+
else:
|
654 |
+
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
655 |
+
examples["mteb_task"] = "Unknown"
|
656 |
return examples
|
657 |
|
658 |
for model in EXTERNAL_MODELS:
|
659 |
+
ds = load_dataset("mteb/results", model)
|
660 |
# For local debugging:
|
661 |
#, download_mode='force_redownload', verification_mode="no_checks")
|
662 |
ds = ds.map(add_lang)
|
|
|
709 |
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
|
710 |
return df
|
711 |
|
|
|
712 |
def add_rank(df):
|
713 |
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length"]]
|
714 |
if len(cols_to_rank) == 1:
|
|
|
793 |
return df
|
794 |
|
795 |
def get_mteb_average():
|
796 |
+
global DATA_OVERALL, DATA_CLASSIFICATION_EN, DATA_CLUSTERING, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS_EN, DATA_SUMMARIZATION
|
797 |
DATA_OVERALL = get_mteb_data(
|
798 |
tasks=[
|
799 |
"Classification",
|
|
|
804 |
"STS",
|
805 |
"Summarization",
|
806 |
],
|
807 |
+
datasets=TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS + TASK_LIST_SUMMARIZATION,
|
808 |
fillna=False,
|
809 |
add_emb_dim=True,
|
810 |
rank=False,
|
|
|
827 |
DATA_OVERALL = DATA_OVERALL.round(2)
|
828 |
|
829 |
DATA_CLASSIFICATION_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION])
|
830 |
+
# Only keep rows with at least one score in addition to the "Model" & rank column
|
831 |
+
DATA_CLASSIFICATION_EN = DATA_CLASSIFICATION_EN[DATA_CLASSIFICATION_EN.iloc[:, 2:].ne("").any(axis=1)]
|
832 |
+
|
833 |
DATA_CLUSTERING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING])
|
834 |
+
DATA_CLUSTERING = DATA_CLUSTERING[DATA_CLUSTERING.iloc[:, 2:].ne("").any(axis=1)]
|
835 |
+
|
836 |
DATA_PAIR_CLASSIFICATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION])
|
837 |
+
DATA_PAIR_CLASSIFICATION = DATA_PAIR_CLASSIFICATION[DATA_PAIR_CLASSIFICATION.iloc[:, 2:].ne("").any(axis=1)]
|
838 |
+
|
839 |
DATA_RERANKING = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RERANKING])
|
840 |
+
DATA_RERANKING = DATA_RERANKING[DATA_RERANKING.iloc[:, 2:].ne("").any(axis=1)]
|
841 |
+
|
842 |
DATA_RETRIEVAL = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_RETRIEVAL])
|
843 |
+
DATA_RETRIEVAL = DATA_RETRIEVAL[DATA_RETRIEVAL.iloc[:, 2:].ne("").any(axis=1)]
|
844 |
+
|
845 |
DATA_STS_EN = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_STS])
|
846 |
+
DATA_STS_EN = DATA_STS_EN[DATA_STS_EN.iloc[:, 2:].ne("").any(axis=1)]
|
847 |
+
|
848 |
DATA_SUMMARIZATION = add_rank(DATA_OVERALL[["Model"] + TASK_LIST_SUMMARIZATION])
|
849 |
+
DATA_SUMMARIZATION = DATA_SUMMARIZATION[DATA_SUMMARIZATION.iloc[:, 1:].ne("").any(axis=1)]
|
850 |
|
851 |
# Fill NaN after averaging
|
852 |
DATA_OVERALL.fillna("", inplace=True)
|
853 |
|
854 |
DATA_OVERALL = DATA_OVERALL[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_EN)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL)} datasets)", f"STS Average ({len(TASK_LIST_STS)} datasets)", f"Summarization Average ({len(TASK_LIST_SUMMARIZATION)} dataset)"]]
|
855 |
+
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
|
856 |
|
857 |
return DATA_OVERALL
|
858 |
|
859 |
+
def get_mteb_average_zh():
|
860 |
+
global DATA_OVERALL_ZH, DATA_CLASSIFICATION_ZH, DATA_CLUSTERING_ZH, DATA_PAIR_CLASSIFICATION_ZH, DATA_RERANKING_ZH, DATA_RETRIEVAL_ZH, DATA_STS_ZH
|
861 |
+
DATA_OVERALL_ZH = get_mteb_data(
|
862 |
+
tasks=[
|
863 |
+
"Classification",
|
864 |
+
"Clustering",
|
865 |
+
"PairClassification",
|
866 |
+
"Reranking",
|
867 |
+
"Retrieval",
|
868 |
+
"STS",
|
869 |
+
],
|
870 |
+
datasets=TASK_LIST_CLASSIFICATION_ZH + TASK_LIST_CLUSTERING_ZH + TASK_LIST_PAIR_CLASSIFICATION_ZH + TASK_LIST_RERANKING_ZH + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_STS_ZH,
|
871 |
+
fillna=False,
|
872 |
+
add_emb_dim=True,
|
873 |
+
rank=False,
|
874 |
+
)
|
875 |
+
# Debugging:
|
876 |
+
# DATA_OVERALL_ZH.to_csv("overall.csv")
|
877 |
+
|
878 |
+
DATA_OVERALL_ZH.insert(1, f"Average ({len(TASK_LIST_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_ZH].mean(axis=1, skipna=False))
|
879 |
+
DATA_OVERALL_ZH.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_CLASSIFICATION_ZH].mean(axis=1, skipna=False))
|
880 |
+
DATA_OVERALL_ZH.insert(3, f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_CLUSTERING_ZH].mean(axis=1, skipna=False))
|
881 |
+
DATA_OVERALL_ZH.insert(4, f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_PAIR_CLASSIFICATION_ZH].mean(axis=1, skipna=False))
|
882 |
+
DATA_OVERALL_ZH.insert(5, f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_RERANKING_ZH].mean(axis=1, skipna=False))
|
883 |
+
DATA_OVERALL_ZH.insert(6, f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_RETRIEVAL_ZH].mean(axis=1, skipna=False))
|
884 |
+
DATA_OVERALL_ZH.insert(7, f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)", DATA_OVERALL_ZH[TASK_LIST_STS_ZH].mean(axis=1, skipna=False))
|
885 |
+
DATA_OVERALL_ZH.sort_values(f"Average ({len(TASK_LIST_ZH)} datasets)", ascending=False, inplace=True)
|
886 |
+
# Start ranking from 1
|
887 |
+
DATA_OVERALL_ZH.insert(0, "Rank", list(range(1, len(DATA_OVERALL_ZH) + 1)))
|
888 |
+
|
889 |
+
DATA_OVERALL_ZH = DATA_OVERALL_ZH.round(2)
|
890 |
+
|
891 |
+
DATA_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLASSIFICATION_ZH])
|
892 |
+
# Only keep rows with at least one score in addition to the "Model" & rank column
|
893 |
+
DATA_CLASSIFICATION_ZH = DATA_CLASSIFICATION_ZH[DATA_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
894 |
+
|
895 |
+
DATA_CLUSTERING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_CLUSTERING_ZH])
|
896 |
+
DATA_CLUSTERING_ZH = DATA_CLUSTERING_ZH[DATA_CLUSTERING_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
897 |
+
|
898 |
+
DATA_PAIR_CLASSIFICATION_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_PAIR_CLASSIFICATION_ZH])
|
899 |
+
DATA_PAIR_CLASSIFICATION_ZH = DATA_PAIR_CLASSIFICATION_ZH[DATA_PAIR_CLASSIFICATION_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
900 |
+
|
901 |
+
DATA_RERANKING_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RERANKING_ZH])
|
902 |
+
DATA_RERANKING_ZH = DATA_RERANKING_ZH[DATA_RERANKING_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
903 |
+
|
904 |
+
DATA_RETRIEVAL_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_RETRIEVAL_ZH])
|
905 |
+
DATA_RETRIEVAL_ZH = DATA_RETRIEVAL_ZH[DATA_RETRIEVAL_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
906 |
+
|
907 |
+
DATA_STS_ZH = add_rank(DATA_OVERALL_ZH[["Model"] + TASK_LIST_STS_ZH])
|
908 |
+
DATA_STS_ZH = DATA_STS_ZH[DATA_STS_ZH.iloc[:, 2:].ne("").any(axis=1)]
|
909 |
+
|
910 |
+
# Fill NaN after averaging
|
911 |
+
DATA_OVERALL_ZH.fillna("", inplace=True)
|
912 |
+
|
913 |
+
DATA_OVERALL_ZH = DATA_OVERALL_ZH[["Rank", "Model", "Model Size (GB)", "Embedding Dimensions", "Sequence Length", f"Average ({len(TASK_LIST_ZH)} datasets)", f"Classification Average ({len(TASK_LIST_CLASSIFICATION_ZH)} datasets)", f"Clustering Average ({len(TASK_LIST_CLUSTERING_ZH)} datasets)", f"Pair Classification Average ({len(TASK_LIST_PAIR_CLASSIFICATION_ZH)} datasets)", f"Reranking Average ({len(TASK_LIST_RERANKING_ZH)} datasets)", f"Retrieval Average ({len(TASK_LIST_RETRIEVAL_ZH)} datasets)", f"STS Average ({len(TASK_LIST_STS_ZH)} datasets)"]]
|
914 |
+
DATA_OVERALL_ZH = DATA_OVERALL_ZH[DATA_OVERALL_ZH.iloc[:, 5:].ne("").any(axis=1)]
|
915 |
+
|
916 |
+
return DATA_OVERALL_ZH
|
917 |
+
|
918 |
get_mteb_average()
|
919 |
+
get_mteb_average_zh()
|
920 |
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
921 |
DATA_BITEXT_MINING_OTHER = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_OTHER)
|
922 |
DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
|
923 |
DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
|
924 |
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
925 |
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
|
926 |
+
DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
|
927 |
DATA_RETRIEVAL_PL = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_PL)
|
928 |
+
DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)
|
929 |
|
930 |
# Exact, add all non-nan integer values for every dataset
|
931 |
NUM_SCORES = 0
|
932 |
DATASETS = []
|
933 |
+
MODELS = []
|
934 |
# LANGUAGES = []
|
935 |
+
for d in [
|
936 |
+
DATA_BITEXT_MINING,
|
937 |
+
DATA_BITEXT_MINING_OTHER,
|
938 |
+
DATA_CLASSIFICATION_EN,
|
939 |
+
DATA_CLASSIFICATION_DA,
|
940 |
+
DATA_CLASSIFICATION_NB,
|
941 |
+
DATA_CLASSIFICATION_SV,
|
942 |
+
DATA_CLASSIFICATION_ZH,
|
943 |
+
DATA_CLASSIFICATION_OTHER,
|
944 |
+
DATA_CLUSTERING,
|
945 |
+
DATA_CLUSTERING_DE,
|
946 |
+
DATA_CLUSTERING_ZH,
|
947 |
+
DATA_PAIR_CLASSIFICATION,
|
948 |
+
DATA_PAIR_CLASSIFICATION_ZH,
|
949 |
+
DATA_RERANKING,
|
950 |
+
DATA_RERANKING_ZH,
|
951 |
+
DATA_RETRIEVAL,
|
952 |
+
DATA_RETRIEVAL_ZH,
|
953 |
+
DATA_STS_EN,
|
954 |
+
DATA_STS_ZH,
|
955 |
+
DATA_STS_OTHER,
|
956 |
+
DATA_SUMMARIZATION,
|
957 |
+
]:
|
958 |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
959 |
cols_to_ignore = 3 if "Average" in d.columns else 2
|
960 |
# Count number of scores including only non-nan floats & excluding the rank column
|
|
|
962 |
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
|
963 |
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
|
964 |
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
|
965 |
+
MODELS += d["Model"].tolist()
|
966 |
|
967 |
NUM_DATASETS = len(set(DATASETS))
|
968 |
# NUM_LANGUAGES = len(set(LANGUAGES))
|
969 |
+
NUM_MODELS = len(set(MODELS))
|
970 |
|
971 |
block = gr.Blocks()
|
972 |
with block:
|
|
|
976 |
- **Total Datasets**: {NUM_DATASETS}
|
977 |
- **Total Languages**: 113
|
978 |
- **Total Scores**: {NUM_SCORES}
|
979 |
+
- **Total Models**: {NUM_MODELS}
|
980 |
""")
|
981 |
with gr.Tabs():
|
982 |
with gr.TabItem("Overall"):
|
983 |
+
with gr.TabItem("English"):
|
984 |
+
with gr.Row():
|
985 |
+
gr.Markdown("""
|
986 |
+
**Overall MTEB English leaderboard 🔮**
|
987 |
+
|
988 |
+
- **Metric:** Various, refer to task tabs
|
989 |
+
- **Languages:** English
|
990 |
+
""")
|
991 |
+
with gr.Row():
|
992 |
+
data_overall = gr.components.Dataframe(
|
993 |
+
DATA_OVERALL,
|
994 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL.columns),
|
995 |
+
type="pandas",
|
996 |
+
wrap=True,
|
997 |
+
)
|
998 |
+
with gr.Row():
|
999 |
+
data_run_overall = gr.Button("Refresh")
|
1000 |
+
data_run_overall.click(get_mteb_average, inputs=None, outputs=data_overall)
|
1001 |
+
with gr.TabItem("Chinese"):
|
1002 |
+
with gr.Row():
|
1003 |
+
gr.Markdown("""
|
1004 |
+
**Overall MTEB Chinese leaderboard (C-MTEB) 🔮🇨🇳**
|
1005 |
+
|
1006 |
+
- **Metric:** Various, refer to task tabs
|
1007 |
+
- **Languages:** Chinese
|
1008 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1009 |
+
""")
|
1010 |
+
with gr.Row():
|
1011 |
+
data_overall_zh = gr.components.Dataframe(
|
1012 |
+
DATA_OVERALL_ZH,
|
1013 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_OVERALL_ZH.columns),
|
1014 |
+
type="pandas",
|
1015 |
+
wrap=True,
|
1016 |
+
)
|
1017 |
+
with gr.Row():
|
1018 |
+
data_run_overall_zh = gr.Button("Refresh")
|
1019 |
+
data_run_overall_zh.click(get_mteb_average_zh, inputs=None, outputs=data_overall_zh)
|
1020 |
with gr.TabItem("Bitext Mining"):
|
1021 |
with gr.TabItem("English-X"):
|
1022 |
with gr.Row():
|
1023 |
gr.Markdown("""
|
1024 |
+
**Bitext Mining English-X Leaderboard 🎌**
|
1025 |
|
1026 |
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
1027 |
- **Languages:** 117 (Pairs of: English & other language)
|
|
|
1033 |
type="pandas",
|
1034 |
)
|
1035 |
with gr.Row():
|
1036 |
+
data_run_bitext_mining = gr.Button("Refresh")
|
1037 |
task_bitext_mining = gr.Variable(value=["BitextMining"])
|
1038 |
lang_bitext_mining = gr.Variable(value=[])
|
1039 |
datasets_bitext_mining = gr.Variable(value=TASK_LIST_BITEXT_MINING)
|
1040 |
+
data_run_bitext_mining.click(
|
1041 |
get_mteb_data,
|
1042 |
inputs=[task_bitext_mining, lang_bitext_mining, datasets_bitext_mining],
|
1043 |
outputs=data_bitext_mining,
|
|
|
1058 |
type="pandas",
|
1059 |
)
|
1060 |
with gr.Row():
|
1061 |
+
data_run_bitext_mining_da = gr.Button("Refresh")
|
1062 |
task_bitext_mining_da = gr.Variable(value=["BitextMining"])
|
1063 |
lang_bitext_mining_da = gr.Variable(value=[])
|
1064 |
datasets_bitext_mining_da = gr.Variable(value=TASK_LIST_BITEXT_MINING_OTHER)
|
1065 |
+
data_run_bitext_mining_da.click(
|
1066 |
get_mteb_data,
|
1067 |
inputs=[
|
1068 |
task_bitext_mining_da,
|
|
|
1075 |
with gr.TabItem("English"):
|
1076 |
with gr.Row():
|
1077 |
gr.Markdown("""
|
1078 |
+
**Classification English Leaderboard ❤️**
|
1079 |
|
1080 |
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
1081 |
- **Languages:** English
|
|
|
1098 |
],
|
1099 |
outputs=data_classification_en,
|
1100 |
)
|
1101 |
+
with gr.TabItem("Chinese"):
|
1102 |
+
with gr.Row():
|
1103 |
+
gr.Markdown("""
|
1104 |
+
**Classification Chinese Leaderboard 🧡🇨🇳**
|
1105 |
+
|
1106 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
1107 |
+
- **Languages:** Chinese
|
1108 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1109 |
+
""")
|
1110 |
+
with gr.Row():
|
1111 |
+
data_classification_zh = gr.components.Dataframe(
|
1112 |
+
DATA_CLASSIFICATION_ZH,
|
1113 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_ZH.columns),
|
1114 |
+
type="pandas",
|
1115 |
+
)
|
1116 |
+
with gr.Row():
|
1117 |
+
data_run_classification_zh = gr.Button("Refresh")
|
1118 |
+
task_classification_zh = gr.Variable(value=["Classification"])
|
1119 |
+
lang_classification_zh = gr.Variable([])
|
1120 |
+
datasets_classification_zh = gr.Variable(value=TASK_LIST_CLASSIFICATION_ZH)
|
1121 |
+
data_run_classification_zh.click(
|
1122 |
+
get_mteb_data,
|
1123 |
+
inputs=[
|
1124 |
+
task_classification_zh,
|
1125 |
+
lang_classification_zh,
|
1126 |
+
datasets_classification_zh,
|
1127 |
+
],
|
1128 |
+
outputs=data_classification_zh,
|
1129 |
+
)
|
1130 |
with gr.TabItem("Danish"):
|
1131 |
with gr.Row():
|
1132 |
gr.Markdown("""
|
|
|
1229 |
type="pandas",
|
1230 |
)
|
1231 |
with gr.Row():
|
1232 |
+
data_run_classification = gr.Button("Refresh")
|
1233 |
task_classification = gr.Variable(value=["Classification"])
|
1234 |
lang_classification = gr.Variable(value=[])
|
1235 |
datasets_classification = gr.Variable(value=TASK_LIST_CLASSIFICATION_OTHER)
|
1236 |
+
data_run_classification.click(
|
1237 |
get_mteb_data,
|
1238 |
inputs=[
|
1239 |
task_classification,
|
|
|
1258 |
type="pandas",
|
1259 |
)
|
1260 |
with gr.Row():
|
1261 |
+
data_run_clustering_en = gr.Button("Refresh")
|
1262 |
task_clustering = gr.Variable(value=["Clustering"])
|
1263 |
lang_clustering = gr.Variable(value=[])
|
1264 |
datasets_clustering = gr.Variable(value=TASK_LIST_CLUSTERING)
|
1265 |
+
data_run_clustering_en.click(
|
1266 |
get_mteb_data,
|
1267 |
inputs=[task_clustering, lang_clustering, datasets_clustering],
|
1268 |
outputs=data_clustering,
|
1269 |
)
|
1270 |
+
with gr.TabItem("Chinese"):
|
1271 |
+
with gr.Row():
|
1272 |
+
gr.Markdown("""
|
1273 |
+
**Clustering Chinese Leaderboard ✨🇨🇳**
|
1274 |
+
|
1275 |
+
- **Metric:** Validity Measure (v_measure)
|
1276 |
+
- **Languages:** Chinese
|
1277 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1278 |
+
""")
|
1279 |
+
with gr.Row():
|
1280 |
+
data_clustering_zh = gr.components.Dataframe(
|
1281 |
+
DATA_CLUSTERING_ZH,
|
1282 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_ZH.columns),
|
1283 |
+
type="pandas",
|
1284 |
+
)
|
1285 |
+
with gr.Row():
|
1286 |
+
data_run_clustering_zh = gr.Button("Refresh")
|
1287 |
+
task_clustering_zh = gr.Variable(value=["Clustering"])
|
1288 |
+
lang_clustering_zh = gr.Variable(value=[])
|
1289 |
+
datasets_clustering_zh = gr.Variable(value=TASK_LIST_CLUSTERING_ZH)
|
1290 |
+
data_run_clustering_zh.click(
|
1291 |
+
get_mteb_data,
|
1292 |
+
inputs=[task_clustering_zh, lang_clustering_zh, datasets_clustering_zh],
|
1293 |
+
outputs=data_clustering_zh,
|
1294 |
+
)
|
1295 |
with gr.TabItem("German"):
|
1296 |
with gr.Row():
|
1297 |
gr.Markdown("""
|
|
|
1303 |
""")
|
1304 |
with gr.Row():
|
1305 |
data_clustering_de = gr.components.Dataframe(
|
1306 |
+
DATA_CLUSTERING_DE,
|
1307 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLUSTERING_DE.columns) * 2,
|
1308 |
type="pandas",
|
1309 |
)
|
1310 |
with gr.Row():
|
1311 |
+
data_run_clustering_de = gr.Button("Refresh")
|
1312 |
task_clustering_de = gr.Variable(value=["Clustering"])
|
1313 |
lang_clustering_de = gr.Variable(value=[])
|
1314 |
datasets_clustering_de = gr.Variable(value=TASK_LIST_CLUSTERING_DE)
|
1315 |
+
data_run_clustering_de.click(
|
1316 |
get_mteb_data,
|
1317 |
inputs=[task_clustering_de, lang_clustering_de, datasets_clustering_de],
|
1318 |
outputs=data_clustering_de,
|
1319 |
)
|
1320 |
with gr.TabItem("Pair Classification"):
|
1321 |
+
with gr.TabItem("English"):
|
1322 |
+
with gr.Row():
|
1323 |
+
gr.Markdown("""
|
1324 |
+
**Pair Classification English Leaderboard 🎭**
|
1325 |
+
|
1326 |
+
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
1327 |
+
- **Languages:** English
|
1328 |
+
""")
|
1329 |
+
with gr.Row():
|
1330 |
+
data_pair_classification = gr.components.Dataframe(
|
1331 |
+
DATA_PAIR_CLASSIFICATION,
|
1332 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION.columns),
|
1333 |
+
type="pandas",
|
1334 |
+
)
|
1335 |
+
with gr.Row():
|
1336 |
+
data_run_pair_classification = gr.Button("Refresh")
|
1337 |
+
task_pair_classification = gr.Variable(value=["PairClassification"])
|
1338 |
+
lang_pair_classification = gr.Variable(value=[])
|
1339 |
+
datasets_pair_classification = gr.Variable(value=TASK_LIST_PAIR_CLASSIFICATION)
|
1340 |
+
data_run_pair_classification.click(
|
1341 |
+
get_mteb_data,
|
1342 |
+
inputs=[
|
1343 |
+
task_pair_classification,
|
1344 |
+
lang_pair_classification,
|
1345 |
+
datasets_pair_classification,
|
1346 |
+
],
|
1347 |
+
outputs=data_pair_classification,
|
1348 |
+
)
|
1349 |
+
with gr.TabItem("Chinese"):
|
1350 |
+
with gr.Row():
|
1351 |
+
gr.Markdown("""
|
1352 |
+
**Pair Classification Chinese Leaderboard 🎭🇨🇳**
|
1353 |
+
|
1354 |
+
- **Metric:** Average Precision based on Cosine Similarities (cos_sim_ap)
|
1355 |
+
- **Languages:** Chinese
|
1356 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1357 |
+
""")
|
1358 |
+
with gr.Row():
|
1359 |
+
data_pair_classification_zh = gr.components.Dataframe(
|
1360 |
+
DATA_PAIR_CLASSIFICATION_ZH,
|
1361 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_PAIR_CLASSIFICATION_ZH.columns),
|
1362 |
+
type="pandas",
|
1363 |
+
)
|
1364 |
+
with gr.Row():
|
1365 |
+
data_run = gr.Button("Refresh")
|
1366 |
+
task_pair_classification_zh = gr.Variable(value=["PairClassification"])
|
1367 |
+
lang_pair_classification_zh = gr.Variable(value=[])
|
1368 |
+
datasets_pair_classification_zh = gr.Variable(value=TASK_LIST_PAIR_CLASSIFICATION_ZH)
|
1369 |
+
data_run_classification_zh.click(
|
1370 |
+
get_mteb_data,
|
1371 |
+
inputs=[
|
1372 |
+
task_pair_classification_zh,
|
1373 |
+
lang_pair_classification_zh,
|
1374 |
+
datasets_pair_classification_zh,
|
1375 |
+
],
|
1376 |
+
outputs=data_pair_classification_zh,
|
1377 |
+
)
|
1378 |
with gr.TabItem("Reranking"):
|
1379 |
+
with gr.TabItem("English"):
|
1380 |
+
with gr.Row():
|
1381 |
+
gr.Markdown("""
|
1382 |
+
**Reranking English Leaderboard 🥈**
|
1383 |
+
|
1384 |
+
- **Metric:** Mean Average Precision (MAP)
|
1385 |
+
- **Languages:** English
|
1386 |
+
""")
|
1387 |
+
with gr.Row():
|
1388 |
+
data_reranking = gr.components.Dataframe(
|
1389 |
+
DATA_RERANKING,
|
1390 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING.columns),
|
1391 |
+
type="pandas",
|
1392 |
+
)
|
1393 |
+
with gr.Row():
|
1394 |
+
data_run_reranking = gr.Button("Refresh")
|
1395 |
+
task_reranking = gr.Variable(value=["Reranking"])
|
1396 |
+
lang_reranking = gr.Variable(value=[])
|
1397 |
+
datasets_reranking = gr.Variable(value=TASK_LIST_RERANKING)
|
1398 |
+
data_run_reranking.click(
|
1399 |
+
get_mteb_data,
|
1400 |
+
inputs=[
|
1401 |
+
task_reranking,
|
1402 |
+
lang_reranking,
|
1403 |
+
datasets_reranking,
|
1404 |
+
],
|
1405 |
+
outputs=data_reranking
|
1406 |
+
)
|
1407 |
+
with gr.TabItem("Chinese"):
|
1408 |
+
with gr.Row():
|
1409 |
+
gr.Markdown("""
|
1410 |
+
**Reranking Chinese Leaderboard 🥈🇨🇳**
|
1411 |
+
|
1412 |
+
- **Metric:** Mean Average Precision (MAP)
|
1413 |
+
- **Languages:** Chinese
|
1414 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1415 |
+
""")
|
1416 |
+
with gr.Row():
|
1417 |
+
data_reranking_zh = gr.components.Dataframe(
|
1418 |
+
DATA_RERANKING_ZH,
|
1419 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING_ZH.columns),
|
1420 |
+
type="pandas",
|
1421 |
+
)
|
1422 |
+
with gr.Row():
|
1423 |
+
data_run_reranking_zh = gr.Button("Refresh")
|
1424 |
+
task_reranking_zh = gr.Variable(value=["Reranking"])
|
1425 |
+
lang_reranking_zh = gr.Variable(value=[])
|
1426 |
+
datasets_reranking_zh = gr.Variable(value=TASK_LIST_RERANKING_ZH)
|
1427 |
+
data_run_reranking_zh.click(
|
1428 |
+
get_mteb_data,
|
1429 |
+
inputs=[task_reranking_zh, lang_reranking_zh, datasets_reranking_zh],
|
1430 |
+
outputs=data_reranking_zh,
|
1431 |
+
)
|
1432 |
with gr.TabItem("Retrieval"):
|
1433 |
with gr.TabItem("English"):
|
1434 |
with gr.Row():
|
1435 |
gr.Markdown("""
|
1436 |
+
**Retrieval English Leaderboard 🔎**
|
1437 |
|
1438 |
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
1439 |
- **Languages:** English
|
|
|
1446 |
type="pandas",
|
1447 |
)
|
1448 |
with gr.Row():
|
1449 |
+
data_run_retrieval = gr.Button("Refresh")
|
1450 |
task_retrieval = gr.Variable(value=["Retrieval"])
|
1451 |
+
lang_retrieval = gr.Variable(value=[])
|
1452 |
+
datasets_retrieval = gr.Variable(value=TASK_LIST_RETRIEVAL)
|
1453 |
+
data_run_retrieval.click(
|
1454 |
+
get_mteb_data,
|
1455 |
+
inputs=[
|
1456 |
+
task_retrieval,
|
1457 |
+
lang_retrieval,
|
1458 |
+
datasets_retrieval,
|
1459 |
+
],
|
1460 |
+
outputs=data_retrieval
|
1461 |
+
)
|
1462 |
+
with gr.TabItem("Chinese"):
|
1463 |
+
with gr.Row():
|
1464 |
+
gr.Markdown("""
|
1465 |
+
**Retrieval Chinese Leaderboard 🔎🇨🇳**
|
1466 |
+
|
1467 |
+
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
1468 |
+
- **Languages:** Chinese
|
1469 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1470 |
+
""")
|
1471 |
+
with gr.Row():
|
1472 |
+
data_retrieval_zh = gr.components.Dataframe(
|
1473 |
+
DATA_RETRIEVAL_ZH,
|
1474 |
+
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
1475 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL_ZH.columns) * 2,
|
1476 |
+
type="pandas",
|
1477 |
+
)
|
1478 |
+
with gr.Row():
|
1479 |
+
data_run_retrieval_zh = gr.Button("Refresh")
|
1480 |
+
task_retrieval_zh = gr.Variable(value=["Retrieval"])
|
1481 |
+
lang_retrieval_zh = gr.Variable(value=[])
|
1482 |
+
datasets_retrieval_zh = gr.Variable(value=TASK_LIST_RETRIEVAL_ZH)
|
1483 |
+
data_run_retrieval_zh.click(
|
1484 |
+
get_mteb_data,
|
1485 |
+
inputs=[task_retrieval_zh, lang_retrieval_zh, datasets_retrieval_zh],
|
1486 |
+
outputs=data_retrieval_zh,
|
1487 |
)
|
1488 |
with gr.TabItem("Polish"):
|
1489 |
with gr.Row():
|
|
|
1502 |
type="pandas",
|
1503 |
)
|
1504 |
with gr.Row():
|
1505 |
+
data_run_retrieval_pl = gr.Button("Refresh")
|
1506 |
task_retrieval_pl = gr.Variable(value=["Retrieval"])
|
1507 |
lang_retrieval_pl = gr.Variable(value=[])
|
1508 |
datasets_retrieval_pl = gr.Variable(value=TASK_LIST_RETRIEVAL_PL)
|
1509 |
+
data_run_retrieval_pl.click(
|
1510 |
get_mteb_data,
|
1511 |
inputs=[task_retrieval_pl, lang_retrieval_pl, datasets_retrieval_pl],
|
1512 |
outputs=data_retrieval_pl
|
|
|
1515 |
with gr.TabItem("English"):
|
1516 |
with gr.Row():
|
1517 |
gr.Markdown("""
|
1518 |
+
**STS English Leaderboard 🤖**
|
1519 |
|
1520 |
- **Metric:** Spearman correlation based on cosine similarity
|
1521 |
- **Languages:** English
|
|
|
1529 |
with gr.Row():
|
1530 |
data_run_sts_en = gr.Button("Refresh")
|
1531 |
task_sts_en = gr.Variable(value=["STS"])
|
1532 |
+
lang_sts_en = gr.Variable(value=[])
|
1533 |
+
datasets_sts_en = gr.Variable(value=TASK_LIST_STS)
|
1534 |
data_run_sts_en.click(
|
1535 |
get_mteb_data,
|
1536 |
+
inputs=[task_sts_en, lang_sts_en, datasets_sts_en],
|
1537 |
outputs=data_sts_en,
|
1538 |
)
|
1539 |
+
with gr.TabItem("Chinese"):
|
1540 |
with gr.Row():
|
1541 |
gr.Markdown("""
|
1542 |
+
**STS Chinese Leaderboard 🤖🇨🇳**
|
1543 |
|
1544 |
- **Metric:** Spearman correlation based on cosine similarity
|
1545 |
+
- **Languages:** Chinese
|
1546 |
+
- **Credits:** [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
1547 |
""")
|
1548 |
with gr.Row():
|
1549 |
+
data_sts_zh = gr.components.Dataframe(
|
1550 |
+
DATA_STS_ZH,
|
1551 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_ZH.columns),
|
1552 |
type="pandas",
|
1553 |
)
|
1554 |
with gr.Row():
|
1555 |
+
data_run_sts_zh = gr.Button("Refresh")
|
1556 |
+
task_sts_zh = gr.Variable(value=["STS"])
|
1557 |
+
lang_sts_zh = gr.Variable(value=[])
|
1558 |
+
datasets_sts_zh = gr.Variable(value=TASK_LIST_STS_ZH)
|
1559 |
+
data_run_sts_zh.click(
|
1560 |
+
get_mteb_data,
|
1561 |
+
inputs=[task_sts_zh, lang_sts_zh, datasets_sts_zh],
|
1562 |
+
outputs=data_sts_zh,
|
1563 |
+
)
|
1564 |
+
with gr.TabItem("Other"):
|
1565 |
+
with gr.Row():
|
1566 |
+
gr.Markdown("""
|
1567 |
+
**STS Other Leaderboard 👽**
|
1568 |
+
|
1569 |
+
- **Metric:** Spearman correlation based on cosine similarity
|
1570 |
+
- **Languages:** Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs)
|
1571 |
+
""")
|
1572 |
+
with gr.Row():
|
1573 |
+
data_sts_other = gr.components.Dataframe(
|
1574 |
+
DATA_STS_OTHER,
|
1575 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_STS_OTHER.columns) * 2,
|
1576 |
+
type="pandas",
|
1577 |
+
)
|
1578 |
+
with gr.Row():
|
1579 |
+
data_run_sts_other = gr.Button("Refresh")
|
1580 |
+
task_sts_other = gr.Variable(value=["STS"])
|
1581 |
+
lang_sts_other = gr.Variable(value=[])
|
1582 |
+
datasets_sts_other = gr.Variable(value=TASK_LIST_STS_OTHER)
|
1583 |
+
data_run_sts_other.click(
|
1584 |
+
get_mteb_data,
|
1585 |
+
inputs=[task_sts_other, lang_sts_other, task_sts_other, datasets_sts_other],
|
1586 |
+
outputs=data_sts_other
|
1587 |
+
)
|
1588 |
with gr.TabItem("Summarization"):
|
1589 |
with gr.Row():
|
1590 |
gr.Markdown("""
|