Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Muennighoff
commited on
Commit
·
2c63c2f
1
Parent(s):
8afd49e
Add external models
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +137 -31
- results/.DS_Store +0 -0
- results/LASER2/AmazonCounterfactualClassification.json +43 -0
- results/LASER2/AmazonPolarityClassification.json +14 -0
- results/LASER2/AmazonReviewsClassification.json +49 -0
- results/LASER2/ArguAna.json +31 -0
- results/LASER2/ArxivClusteringP2P.json +9 -0
- results/LASER2/ArxivClusteringS2S.json +9 -0
- results/LASER2/AskUbuntuDupQuestions.json +9 -0
- results/LASER2/BIOSSES.json +19 -0
- results/LASER2/BUCC.json +31 -0
- results/LASER2/Banking77Classification.json +12 -0
- results/LASER2/BiorxivClusteringP2P.json +9 -0
- results/LASER2/BiorxivClusteringS2S.json +9 -0
- results/LASER2/CQADupstackAndroidRetrieval.json +31 -0
- results/LASER2/CQADupstackEnglishRetrieval.json +31 -0
- results/LASER2/CQADupstackGamingRetrieval.json +31 -0
- results/LASER2/CQADupstackGisRetrieval.json +31 -0
- results/LASER2/CQADupstackMathematicaRetrieval.json +31 -0
- results/LASER2/CQADupstackPhysicsRetrieval.json +31 -0
- results/LASER2/CQADupstackProgrammersRetrieval.json +31 -0
- results/LASER2/CQADupstackRetrieval.json +31 -0
- results/LASER2/CQADupstackStatsRetrieval.json +31 -0
- results/LASER2/CQADupstackTexRetrieval.json +31 -0
- results/LASER2/CQADupstackUnixRetrieval.json +31 -0
- results/LASER2/CQADupstackWebmastersRetrieval.json +31 -0
- results/LASER2/CQADupstackWordpressRetrieval.json +31 -0
- results/LASER2/ClimateFEVER.json +31 -0
- results/LASER2/DBPedia.json +31 -0
- results/LASER2/EmotionClassification.json +12 -0
- results/LASER2/FEVER.json +31 -0
- results/LASER2/FiQA2018.json +31 -0
- results/LASER2/HotpotQA.json +31 -0
- results/LASER2/ImdbClassification.json +14 -0
- results/LASER2/MSMARCO.json +58 -0
- results/LASER2/MTOPDomainClassification.json +49 -0
- results/LASER2/MTOPIntentClassification.json +49 -0
- results/LASER2/MassiveIntentClassification.json +364 -0
- results/LASER2/MassiveScenarioClassification.json +364 -0
- results/LASER2/MedrxivClusteringP2P.json +9 -0
- results/LASER2/MedrxivClusteringS2S.json +9 -0
- results/LASER2/MindSmallReranking.json +9 -0
- results/LASER2/NFCorpus.json +31 -0
- results/LASER2/NQ.json +31 -0
- results/LASER2/QuoraRetrieval.json +31 -0
- results/LASER2/RedditClustering.json +9 -0
- results/LASER2/RedditClusteringP2P.json +9 -0
- results/LASER2/SCIDOCS.json +31 -0
- results/LASER2/SICK-R.json +19 -0
- results/LASER2/STS12.json +19 -0
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from huggingface_hub import HfApi, hf_hub_download
|
@@ -29,6 +30,8 @@ TASK_LIST_CLASSIFICATION = [
|
|
29 |
"TweetSentimentExtractionClassification",
|
30 |
]
|
31 |
|
|
|
|
|
32 |
TASK_LIST_CLUSTERING = [
|
33 |
"ArxivClusteringP2P",
|
34 |
"ArxivClusteringS2S",
|
@@ -74,6 +77,20 @@ TASK_LIST_RETRIEVAL = [
|
|
74 |
"TRECCOVID",
|
75 |
]
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
TASK_LIST_STS = [
|
78 |
"BIOSSES",
|
79 |
"SICK-R",
|
@@ -87,6 +104,7 @@ TASK_LIST_STS = [
|
|
87 |
"STSBenchmark",
|
88 |
]
|
89 |
|
|
|
90 |
|
91 |
TASK_LIST_SUMMARIZATION = [
|
92 |
"SummEval",
|
@@ -105,19 +123,107 @@ TASK_TO_METRIC = {
|
|
105 |
"Summarization": "cos_sim_spearman",
|
106 |
}
|
107 |
|
108 |
-
def make_clickable_model(model_name):
|
109 |
# Remove user from model name
|
110 |
-
|
111 |
-
link
|
|
|
112 |
return (
|
113 |
-
f'<a target="_blank" style="text-decoration: underline" href="{link}">{
|
114 |
)
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
def get_mteb_data(tasks=["Clustering"], langs=[], cast_to_str=True, task_to_metric=TASK_TO_METRIC):
|
118 |
api = HfApi()
|
119 |
models = api.list_models(filter="mteb")
|
|
|
120 |
df_list = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
for model in models:
|
122 |
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
123 |
meta = metadata_load(readme_path)
|
@@ -154,8 +260,8 @@ def get_mteb_data(tasks=["Clustering"], langs=[], cast_to_str=True, task_to_metr
|
|
154 |
return df.astype(str) # Cast to str as Gradio does not accept floats
|
155 |
return df
|
156 |
|
157 |
-
def get_mteb_average(
|
158 |
-
global DATA_OVERALL, DATA_CLASSIFICATION_EN, DATA_CLUSTERING, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS_EN, DATA_SUMMARIZATION
|
159 |
DATA_OVERALL = get_mteb_data(
|
160 |
tasks=[
|
161 |
"Classification",
|
@@ -169,6 +275,11 @@ def get_mteb_average(get_all_avgs=False):
|
|
169 |
langs=["en", "en-en"],
|
170 |
cast_to_str=False
|
171 |
)
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
DATA_OVERALL.insert(1, f"Average ({len(TASK_LIST_EN)} datasets)", DATA_OVERALL[TASK_LIST_EN].mean(axis=1, skipna=False))
|
174 |
DATA_OVERALL.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_CLASSIFICATION].mean(axis=1, skipna=False))
|
@@ -204,7 +315,7 @@ with block:
|
|
204 |
gr.Markdown(f"""
|
205 |
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗
|
206 |
|
207 |
-
- **Total Scores**:
|
208 |
- **Total Models**: {len(DATA_OVERALL)}
|
209 |
- **Total Users**: TODO
|
210 |
""")
|
@@ -232,7 +343,7 @@ with block:
|
|
232 |
gr.Markdown("""
|
233 |
**Bitext Mining Leaderboard 🎌**
|
234 |
|
235 |
-
- **Metric:**
|
236 |
- **Languages:** 117
|
237 |
""")
|
238 |
with gr.Row():
|
@@ -242,7 +353,7 @@ with block:
|
|
242 |
)
|
243 |
with gr.Row():
|
244 |
data_run = gr.Button("Refresh")
|
245 |
-
task_bitext_mining = gr.Variable(value="BitextMining")
|
246 |
data_run.click(
|
247 |
get_mteb_data,
|
248 |
inputs=[task_bitext_mining],
|
@@ -265,7 +376,7 @@ with block:
|
|
265 |
)
|
266 |
with gr.Row():
|
267 |
data_run_classification_en = gr.Button("Refresh")
|
268 |
-
task_classification_en = gr.Variable(value="Classification")
|
269 |
lang_classification_en = gr.Variable(value=["en"])
|
270 |
data_run_classification_en.click(
|
271 |
get_mteb_data,
|
@@ -285,12 +396,12 @@ with block:
|
|
285 |
""")
|
286 |
with gr.Row():
|
287 |
data_classification = gr.components.Dataframe(
|
288 |
-
datatype=["markdown"] *
|
289 |
type="pandas",
|
290 |
)
|
291 |
with gr.Row():
|
292 |
data_run = gr.Button("Refresh")
|
293 |
-
task_classification = gr.Variable(value="Classification")
|
294 |
data_run.click(
|
295 |
get_mteb_data,
|
296 |
inputs=[task_classification],
|
@@ -307,13 +418,12 @@ with block:
|
|
307 |
with gr.Row():
|
308 |
data_clustering = gr.components.Dataframe(
|
309 |
DATA_CLUSTERING,
|
310 |
-
datatype="markdown",
|
311 |
type="pandas",
|
312 |
-
col_count=(len(DATA_CLUSTERING.columns), "fixed"),
|
313 |
)
|
314 |
with gr.Row():
|
315 |
data_run = gr.Button("Refresh")
|
316 |
-
task_clustering = gr.Variable(value="Clustering")
|
317 |
data_run.click(
|
318 |
get_mteb_data,
|
319 |
inputs=[task_clustering],
|
@@ -330,13 +440,12 @@ with block:
|
|
330 |
with gr.Row():
|
331 |
data_pair_classification = gr.components.Dataframe(
|
332 |
DATA_PAIR_CLASSIFICATION,
|
333 |
-
datatype="markdown",
|
334 |
type="pandas",
|
335 |
-
col_count=(len(DATA_PAIR_CLASSIFICATION.columns), "fixed"),
|
336 |
)
|
337 |
with gr.Row():
|
338 |
data_run = gr.Button("Refresh")
|
339 |
-
task_pair_classification = gr.Variable(value="PairClassification")
|
340 |
data_run.click(
|
341 |
get_mteb_data,
|
342 |
inputs=[task_pair_classification],
|
@@ -358,7 +467,7 @@ with block:
|
|
358 |
)
|
359 |
with gr.Row():
|
360 |
data_run = gr.Button("Refresh")
|
361 |
-
task_retrieval = gr.Variable(value="Retrieval")
|
362 |
data_run.click(
|
363 |
get_mteb_data, inputs=[task_retrieval], outputs=data_retrieval
|
364 |
)
|
@@ -373,13 +482,12 @@ with block:
|
|
373 |
with gr.Row():
|
374 |
data_reranking = gr.components.Dataframe(
|
375 |
DATA_RERANKING,
|
376 |
-
datatype="markdown",
|
377 |
type="pandas",
|
378 |
-
col_count=(len(DATA_RERANKING.columns), "fixed"),
|
379 |
)
|
380 |
with gr.Row():
|
381 |
data_run = gr.Button("Refresh")
|
382 |
-
task_reranking = gr.Variable(value="Reranking")
|
383 |
metric_reranking = gr.Variable(value="map")
|
384 |
data_run.click(
|
385 |
get_mteb_data, inputs=[task_reranking], outputs=data_reranking
|
@@ -396,15 +504,14 @@ with block:
|
|
396 |
with gr.Row():
|
397 |
data_sts_en = gr.components.Dataframe(
|
398 |
DATA_STS_EN,
|
399 |
-
datatype="markdown",
|
400 |
type="pandas",
|
401 |
-
col_count=(len(DATA_STS_EN.columns), "fixed"),
|
402 |
)
|
403 |
with gr.Row():
|
404 |
-
|
405 |
-
task_sts_en = gr.Variable(value="STS")
|
406 |
lang_sts_en = gr.Variable(value=["en", "en-en"])
|
407 |
-
|
408 |
get_mteb_data,
|
409 |
inputs=[task_sts_en, lang_sts_en],
|
410 |
outputs=data_sts_en,
|
@@ -424,7 +531,7 @@ with block:
|
|
424 |
)
|
425 |
with gr.Row():
|
426 |
data_run = gr.Button("Refresh")
|
427 |
-
task_sts = gr.Variable(value="STS")
|
428 |
data_run.click(get_mteb_data, inputs=[task_sts], outputs=data_sts)
|
429 |
with gr.TabItem("Summarization"):
|
430 |
with gr.Row():
|
@@ -436,14 +543,13 @@ with block:
|
|
436 |
""")
|
437 |
with gr.Row():
|
438 |
data_summarization = gr.components.Dataframe(
|
439 |
-
DATA_SUMMARIZATION,
|
440 |
datatype="markdown",
|
441 |
type="pandas",
|
442 |
-
col_count=(len(DATA_SUMMARIZATION.columns), "fixed"),
|
443 |
)
|
444 |
with gr.Row():
|
445 |
data_run = gr.Button("Refresh")
|
446 |
-
task_summarization = gr.Variable(value="Summarization")
|
447 |
data_run.click(
|
448 |
get_mteb_data,
|
449 |
inputs=[task_summarization],
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
from huggingface_hub import HfApi, hf_hub_download
|
|
|
30 |
"TweetSentimentExtractionClassification",
|
31 |
]
|
32 |
|
33 |
+
TASK_LIST_CLASSIFICATION_NORM = [x.replace(" (en)", "") for x in TASK_LIST_CLASSIFICATION]
|
34 |
+
|
35 |
TASK_LIST_CLUSTERING = [
|
36 |
"ArxivClusteringP2P",
|
37 |
"ArxivClusteringS2S",
|
|
|
77 |
"TRECCOVID",
|
78 |
]
|
79 |
|
80 |
+
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + ["CQADupstackAndroidRetrieval",
|
81 |
+
"CQADupstackEnglishRetrieval",
|
82 |
+
"CQADupstackGamingRetrieval",
|
83 |
+
"CQADupstackGisRetrieval",
|
84 |
+
"CQADupstackMathematicaRetrieval",
|
85 |
+
"CQADupstackPhysicsRetrieval",
|
86 |
+
"CQADupstackProgrammersRetrieval",
|
87 |
+
"CQADupstackStatsRetrieval",
|
88 |
+
"CQADupstackTexRetrieval",
|
89 |
+
"CQADupstackUnixRetrieval",
|
90 |
+
"CQADupstackWebmastersRetrieval",
|
91 |
+
"CQADupstackWordpressRetrieval"
|
92 |
+
]
|
93 |
+
|
94 |
TASK_LIST_STS = [
|
95 |
"BIOSSES",
|
96 |
"SICK-R",
|
|
|
104 |
"STSBenchmark",
|
105 |
]
|
106 |
|
107 |
+
TASK_LIST_STS_NORM = [x.replace(" (en)", "").replace(" (en-en)", "") for x in TASK_LIST_STS]
|
108 |
|
109 |
TASK_LIST_SUMMARIZATION = [
|
110 |
"SummEval",
|
|
|
123 |
"Summarization": "cos_sim_spearman",
|
124 |
}
|
125 |
|
126 |
+
def make_clickable_model(model_name, link=None):
|
127 |
# Remove user from model name
|
128 |
+
model_name = model_name.split("/")[-1]
|
129 |
+
if link is None:
|
130 |
+
link = "https://huggingface.co/" + model_name
|
131 |
return (
|
132 |
+
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name}</a>'
|
133 |
)
|
134 |
|
135 |
+
# Models without metadata, thus we cannot fetch their results naturally
|
136 |
+
EXTERNAL_MODELS = [
|
137 |
+
"LASER2",
|
138 |
+
"LaBSE",
|
139 |
+
"all-MiniLM-L12-v2",
|
140 |
+
"all-MiniLM-L6-v2",
|
141 |
+
"all-mpnet-base-v2",
|
142 |
+
"allenai-specter",
|
143 |
+
"bert-base-uncased",
|
144 |
+
"contriever-base-msmarco",
|
145 |
+
"glove.6B.300d",
|
146 |
+
"gtr-t5-base",
|
147 |
+
"gtr-t5-large",
|
148 |
+
"gtr-t5-xl",
|
149 |
+
"gtr-t5-xxl",
|
150 |
+
"komninos",
|
151 |
+
"msmarco-bert-co-condensor",
|
152 |
+
"paraphrase-multilingual-MiniLM-L12-v2",
|
153 |
+
"paraphrase-multilingual-mpnet-base-v2",
|
154 |
+
"sentence-t5-base",
|
155 |
+
"sentence-t5-large",
|
156 |
+
"sentence-t5-xl",
|
157 |
+
"sentence-t5-xxl",
|
158 |
+
"sgpt-bloom-1b3-nli",
|
159 |
+
"sgpt-bloom-7b1-msmarco",
|
160 |
+
"sgpt-nli-bloom-1b3",
|
161 |
+
"sup-simcse-bert-base-uncased",
|
162 |
+
# "text-similarity-ada-001",
|
163 |
+
"unsup-simcse-bert-base-uncased",
|
164 |
+
]
|
165 |
+
EXTERNAL_MODEL_TO_LINK = {
|
166 |
+
"LASER2": "https://github.com/facebookresearch/LASER",
|
167 |
+
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
168 |
+
}
|
169 |
+
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
170 |
+
|
171 |
+
def add_lang(examples):
|
172 |
+
if not(examples["eval_language"]):
|
173 |
+
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
|
174 |
+
else:
|
175 |
+
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
|
176 |
+
return examples
|
177 |
+
|
178 |
+
def add_task(examples):
|
179 |
+
# Could be added to the dataset loading script instead
|
180 |
+
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM:
|
181 |
+
examples["mteb_task"] = "Classification"
|
182 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING:
|
183 |
+
examples["mteb_task"] = "Clustering"
|
184 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_PAIR_CLASSIFICATION:
|
185 |
+
examples["mteb_task"] = "PairClassification"
|
186 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_RERANKING:
|
187 |
+
examples["mteb_task"] = "Reranking"
|
188 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_RETRIEVAL_NORM:
|
189 |
+
examples["mteb_task"] = "Retrieval"
|
190 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_STS_NORM:
|
191 |
+
examples["mteb_task"] = "STS"
|
192 |
+
elif examples["mteb_dataset_name"] in TASK_LIST_SUMMARIZATION:
|
193 |
+
examples["mteb_task"] = "Summarization"
|
194 |
+
else:
|
195 |
+
examples["mteb_task"] = "BitextMining"
|
196 |
+
return examples
|
197 |
+
|
198 |
+
for model in EXTERNAL_MODELS:
|
199 |
+
ds = load_dataset("mteb/results", model)
|
200 |
+
ds = ds.map(add_lang)
|
201 |
+
ds = ds.map(add_task)
|
202 |
+
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/mteb/leaderboard"))}
|
203 |
+
# For now only one metric per task - Could add more metrics lateron
|
204 |
+
for task, metric in TASK_TO_METRIC.items():
|
205 |
+
ds_dict = ds.filter(lambda x: (x["mteb_task"] == task) and (x["metric"] == metric))["test"].to_dict()
|
206 |
+
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
|
207 |
+
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
|
208 |
+
|
209 |
|
210 |
def get_mteb_data(tasks=["Clustering"], langs=[], cast_to_str=True, task_to_metric=TASK_TO_METRIC):
|
211 |
api = HfApi()
|
212 |
models = api.list_models(filter="mteb")
|
213 |
+
# Initialize list to models that we cannot fetch metadata from
|
214 |
df_list = []
|
215 |
+
for model in EXTERNAL_MODEL_RESULTS:
|
216 |
+
results_list = [res for task in tasks for res in EXTERNAL_MODEL_RESULTS[model][task][task_to_metric[task]]]
|
217 |
+
if langs:
|
218 |
+
# Would be cleaner to rely on an extra language column instead
|
219 |
+
langs_format = [f"({lang})" for lang in langs]
|
220 |
+
res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])}
|
221 |
+
else:
|
222 |
+
res = {k: v for d in results_list for k, v in d.items()}
|
223 |
+
# Model & at least one result
|
224 |
+
if len(res) > 1:
|
225 |
+
df_list.append(res)
|
226 |
+
|
227 |
for model in models:
|
228 |
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
229 |
meta = metadata_load(readme_path)
|
|
|
260 |
return df.astype(str) # Cast to str as Gradio does not accept floats
|
261 |
return df
|
262 |
|
263 |
+
def get_mteb_average():
|
264 |
+
global DATA_OVERALL, DATA_CLASSIFICATION_EN, DATA_CLUSTERING, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS_EN, DATA_SUMMARIZATION, NUM_SCORES
|
265 |
DATA_OVERALL = get_mteb_data(
|
266 |
tasks=[
|
267 |
"Classification",
|
|
|
275 |
langs=["en", "en-en"],
|
276 |
cast_to_str=False
|
277 |
)
|
278 |
+
# Approximation (Missing Bitext Mining & including some nans)
|
279 |
+
NUM_SCORES = DATA_OVERALL.shape[0] * DATA_OVERALL.shape[1]
|
280 |
+
|
281 |
+
print("OVERALLDATA", DATA_OVERALL)
|
282 |
+
DATA_OVERALL.to_csv("overall.csv")
|
283 |
|
284 |
DATA_OVERALL.insert(1, f"Average ({len(TASK_LIST_EN)} datasets)", DATA_OVERALL[TASK_LIST_EN].mean(axis=1, skipna=False))
|
285 |
DATA_OVERALL.insert(2, f"Classification Average ({len(TASK_LIST_CLASSIFICATION)} datasets)", DATA_OVERALL[TASK_LIST_CLASSIFICATION].mean(axis=1, skipna=False))
|
|
|
315 |
gr.Markdown(f"""
|
316 |
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗
|
317 |
|
318 |
+
- **Total Scores**: >{NUM_SCORES}
|
319 |
- **Total Models**: {len(DATA_OVERALL)}
|
320 |
- **Total Users**: TODO
|
321 |
""")
|
|
|
343 |
gr.Markdown("""
|
344 |
**Bitext Mining Leaderboard 🎌**
|
345 |
|
346 |
+
- **Metric:** F1 (f1)
|
347 |
- **Languages:** 117
|
348 |
""")
|
349 |
with gr.Row():
|
|
|
353 |
)
|
354 |
with gr.Row():
|
355 |
data_run = gr.Button("Refresh")
|
356 |
+
task_bitext_mining = gr.Variable(value=["BitextMining"])
|
357 |
data_run.click(
|
358 |
get_mteb_data,
|
359 |
inputs=[task_bitext_mining],
|
|
|
376 |
)
|
377 |
with gr.Row():
|
378 |
data_run_classification_en = gr.Button("Refresh")
|
379 |
+
task_classification_en = gr.Variable(value=["Classification"])
|
380 |
lang_classification_en = gr.Variable(value=["en"])
|
381 |
data_run_classification_en.click(
|
382 |
get_mteb_data,
|
|
|
396 |
""")
|
397 |
with gr.Row():
|
398 |
data_classification = gr.components.Dataframe(
|
399 |
+
datatype=["markdown"] * 200, # hack when we don't know how many columns
|
400 |
type="pandas",
|
401 |
)
|
402 |
with gr.Row():
|
403 |
data_run = gr.Button("Refresh")
|
404 |
+
task_classification = gr.Variable(value=["Classification"])
|
405 |
data_run.click(
|
406 |
get_mteb_data,
|
407 |
inputs=[task_classification],
|
|
|
418 |
with gr.Row():
|
419 |
data_clustering = gr.components.Dataframe(
|
420 |
DATA_CLUSTERING,
|
421 |
+
datatype=["markdown"] * len(DATA_CLUSTERING.columns) * 2,
|
422 |
type="pandas",
|
|
|
423 |
)
|
424 |
with gr.Row():
|
425 |
data_run = gr.Button("Refresh")
|
426 |
+
task_clustering = gr.Variable(value=["Clustering"])
|
427 |
data_run.click(
|
428 |
get_mteb_data,
|
429 |
inputs=[task_clustering],
|
|
|
440 |
with gr.Row():
|
441 |
data_pair_classification = gr.components.Dataframe(
|
442 |
DATA_PAIR_CLASSIFICATION,
|
443 |
+
datatype=["markdown"] * len(DATA_PAIR_CLASSIFICATION.columns) * 2,
|
444 |
type="pandas",
|
|
|
445 |
)
|
446 |
with gr.Row():
|
447 |
data_run = gr.Button("Refresh")
|
448 |
+
task_pair_classification = gr.Variable(value=["PairClassification"])
|
449 |
data_run.click(
|
450 |
get_mteb_data,
|
451 |
inputs=[task_pair_classification],
|
|
|
467 |
)
|
468 |
with gr.Row():
|
469 |
data_run = gr.Button("Refresh")
|
470 |
+
task_retrieval = gr.Variable(value=["Retrieval"])
|
471 |
data_run.click(
|
472 |
get_mteb_data, inputs=[task_retrieval], outputs=data_retrieval
|
473 |
)
|
|
|
482 |
with gr.Row():
|
483 |
data_reranking = gr.components.Dataframe(
|
484 |
DATA_RERANKING,
|
485 |
+
datatype=["markdown"] * len(DATA_RERANKING.columns) * 2,
|
486 |
type="pandas",
|
|
|
487 |
)
|
488 |
with gr.Row():
|
489 |
data_run = gr.Button("Refresh")
|
490 |
+
task_reranking = gr.Variable(value=["Reranking"])
|
491 |
metric_reranking = gr.Variable(value="map")
|
492 |
data_run.click(
|
493 |
get_mteb_data, inputs=[task_reranking], outputs=data_reranking
|
|
|
504 |
with gr.Row():
|
505 |
data_sts_en = gr.components.Dataframe(
|
506 |
DATA_STS_EN,
|
507 |
+
datatype=["markdown"] * len(DATA_STS_EN.columns) * 2,
|
508 |
type="pandas",
|
|
|
509 |
)
|
510 |
with gr.Row():
|
511 |
+
data_run_sts_en = gr.Button("Refresh")
|
512 |
+
task_sts_en = gr.Variable(value=["STS"])
|
513 |
lang_sts_en = gr.Variable(value=["en", "en-en"])
|
514 |
+
data_run_sts_en.click(
|
515 |
get_mteb_data,
|
516 |
inputs=[task_sts_en, lang_sts_en],
|
517 |
outputs=data_sts_en,
|
|
|
531 |
)
|
532 |
with gr.Row():
|
533 |
data_run = gr.Button("Refresh")
|
534 |
+
task_sts = gr.Variable(value=["STS"])
|
535 |
data_run.click(get_mteb_data, inputs=[task_sts], outputs=data_sts)
|
536 |
with gr.TabItem("Summarization"):
|
537 |
with gr.Row():
|
|
|
543 |
""")
|
544 |
with gr.Row():
|
545 |
data_summarization = gr.components.Dataframe(
|
546 |
+
DATA_SUMMARIZATION * len(DATA_SUMMARIZATION.columns) * 2,
|
547 |
datatype="markdown",
|
548 |
type="pandas",
|
|
|
549 |
)
|
550 |
with gr.Row():
|
551 |
data_run = gr.Button("Refresh")
|
552 |
+
task_summarization = gr.Variable(value=["Summarization"])
|
553 |
data_run.click(
|
554 |
get_mteb_data,
|
555 |
inputs=[task_summarization],
|
results/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
results/LASER2/AmazonCounterfactualClassification.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"de": {
|
6 |
+
"accuracy": 0.6781584582441113,
|
7 |
+
"accuracy_stderr": 0.060279798858073545,
|
8 |
+
"ap": 0.8036240553535807,
|
9 |
+
"ap_stderr": 0.03476499899077643,
|
10 |
+
"f1": 0.6628493463277175,
|
11 |
+
"f1_stderr": 0.05804533112556245,
|
12 |
+
"main_score": 0.6781584582441113
|
13 |
+
},
|
14 |
+
"en": {
|
15 |
+
"accuracy": 0.7683582089552239,
|
16 |
+
"accuracy_stderr": 0.03737785483516161,
|
17 |
+
"ap": 0.40076479274021654,
|
18 |
+
"ap_stderr": 0.05081532982471566,
|
19 |
+
"f1": 0.70787800776529,
|
20 |
+
"f1_stderr": 0.03884967003850526,
|
21 |
+
"main_score": 0.7683582089552239
|
22 |
+
},
|
23 |
+
"en-ext": {
|
24 |
+
"accuracy": 0.7616941529235383,
|
25 |
+
"accuracy_stderr": 0.05609726317155699,
|
26 |
+
"ap": 0.23620239901382217,
|
27 |
+
"ap_stderr": 0.055900376704944924,
|
28 |
+
"f1": 0.6259005944326002,
|
29 |
+
"f1_stderr": 0.057023255773266515,
|
30 |
+
"main_score": 0.7616941529235383
|
31 |
+
},
|
32 |
+
"evaluation_time": 162.63,
|
33 |
+
"ja": {
|
34 |
+
"accuracy": 0.6875802997858672,
|
35 |
+
"accuracy_stderr": 0.057291619728276316,
|
36 |
+
"ap": 0.18157282477398815,
|
37 |
+
"ap_stderr": 0.0359805625991896,
|
38 |
+
"f1": 0.5601658468471795,
|
39 |
+
"f1_stderr": 0.047780178480722454,
|
40 |
+
"main_score": 0.6875802997858672
|
41 |
+
}
|
42 |
+
}
|
43 |
+
}
|
results/LASER2/AmazonPolarityClassification.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"accuracy": 0.6100945,
|
6 |
+
"accuracy_stderr": 0.032754584770685165,
|
7 |
+
"ap": 0.5701234744666878,
|
8 |
+
"ap_stderr": 0.023665879113998516,
|
9 |
+
"evaluation_time": 169.16,
|
10 |
+
"f1": 0.6049258458477238,
|
11 |
+
"f1_stderr": 0.03882387073720782,
|
12 |
+
"main_score": 0.6100945
|
13 |
+
}
|
14 |
+
}
|
results/LASER2/AmazonReviewsClassification.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"de": {
|
6 |
+
"accuracy": 0.31068,
|
7 |
+
"accuracy_stderr": 0.030799766232879097,
|
8 |
+
"f1": 0.2938071341251565,
|
9 |
+
"f1_stderr": 0.03301311313116498,
|
10 |
+
"main_score": 0.31068
|
11 |
+
},
|
12 |
+
"en": {
|
13 |
+
"accuracy": 0.2871,
|
14 |
+
"accuracy_stderr": 0.031948740194254914,
|
15 |
+
"f1": 0.2763831660571802,
|
16 |
+
"f1_stderr": 0.03216710195455939,
|
17 |
+
"main_score": 0.2871
|
18 |
+
},
|
19 |
+
"es": {
|
20 |
+
"accuracy": 0.32724000000000003,
|
21 |
+
"accuracy_stderr": 0.015933311018115466,
|
22 |
+
"f1": 0.310782596824498,
|
23 |
+
"f1_stderr": 0.022188814588153163,
|
24 |
+
"main_score": 0.32724000000000003
|
25 |
+
},
|
26 |
+
"evaluation_time": 295.02,
|
27 |
+
"fr": {
|
28 |
+
"accuracy": 0.31116,
|
29 |
+
"accuracy_stderr": 0.030352304690089024,
|
30 |
+
"f1": 0.2995469284574527,
|
31 |
+
"f1_stderr": 0.03141580285250744,
|
32 |
+
"main_score": 0.31116
|
33 |
+
},
|
34 |
+
"ja": {
|
35 |
+
"accuracy": 0.28935999999999995,
|
36 |
+
"accuracy_stderr": 0.024075680675735834,
|
37 |
+
"f1": 0.2818735717046802,
|
38 |
+
"f1_stderr": 0.023753772760779744,
|
39 |
+
"main_score": 0.28935999999999995
|
40 |
+
},
|
41 |
+
"zh": {
|
42 |
+
"accuracy": 0.30892000000000003,
|
43 |
+
"accuracy_stderr": 0.02032696730946355,
|
44 |
+
"f1": 0.2990186813313857,
|
45 |
+
"f1_stderr": 0.021581437215568936,
|
46 |
+
"main_score": 0.30892000000000003
|
47 |
+
}
|
48 |
+
}
|
49 |
+
}
|
results/LASER2/ArguAna.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 62.18,
|
4 |
+
"map_at_1": 0.06117,
|
5 |
+
"map_at_10": 0.10455,
|
6 |
+
"map_at_100": 0.11002,
|
7 |
+
"map_at_1000": 0.11084,
|
8 |
+
"map_at_3": 0.09187,
|
9 |
+
"map_at_5": 0.09834,
|
10 |
+
"ndcg_at_1": 0.06117,
|
11 |
+
"ndcg_at_10": 0.12856,
|
12 |
+
"ndcg_at_100": 0.1601,
|
13 |
+
"ndcg_at_1000": 0.18712,
|
14 |
+
"ndcg_at_3": 0.10188,
|
15 |
+
"ndcg_at_5": 0.11358,
|
16 |
+
"precision_at_1": 0.06117,
|
17 |
+
"precision_at_10": 0.02055,
|
18 |
+
"precision_at_100": 0.00365,
|
19 |
+
"precision_at_1000": 0.00059,
|
20 |
+
"precision_at_3": 0.04362,
|
21 |
+
"precision_at_5": 0.03186,
|
22 |
+
"recall_at_1": 0.06117,
|
23 |
+
"recall_at_10": 0.20555,
|
24 |
+
"recall_at_100": 0.36486,
|
25 |
+
"recall_at_1000": 0.58962,
|
26 |
+
"recall_at_3": 0.13087,
|
27 |
+
"recall_at_5": 0.15932
|
28 |
+
},
|
29 |
+
"dataset_version": null,
|
30 |
+
"mteb_version": "0.0.2"
|
31 |
+
}
|
results/LASER2/ArxivClusteringP2P.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 3687.79,
|
4 |
+
"v_measure": 0.1776823856238192,
|
5 |
+
"v_measure_std": 0.15680242731305624
|
6 |
+
},
|
7 |
+
"dataset_version": null,
|
8 |
+
"mteb_version": "0.0.2"
|
9 |
+
}
|
results/LASER2/ArxivClusteringS2S.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 398.92,
|
4 |
+
"v_measure": 0.1239260518556585,
|
5 |
+
"v_measure_std": 0.16362867463758127
|
6 |
+
},
|
7 |
+
"dataset_version": null,
|
8 |
+
"mteb_version": "0.0.2"
|
9 |
+
}
|
results/LASER2/AskUbuntuDupQuestions.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 12.12,
|
4 |
+
"map": 0.4898595820868522,
|
5 |
+
"mrr": 0.6257276964340676
|
6 |
+
},
|
7 |
+
"dataset_version": null,
|
8 |
+
"mteb_version": "0.0.2"
|
9 |
+
}
|
results/LASER2/BIOSSES.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"cos_sim": {
|
4 |
+
"pearson": 0.6212936580597783,
|
5 |
+
"spearman": 0.6200864182463187
|
6 |
+
},
|
7 |
+
"euclidean": {
|
8 |
+
"pearson": 0.6471589936856987,
|
9 |
+
"spearman": 0.68256374544906
|
10 |
+
},
|
11 |
+
"evaluation_time": 10.33,
|
12 |
+
"manhattan": {
|
13 |
+
"pearson": 0.66773509051844,
|
14 |
+
"spearman": 0.7192212072202181
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"dataset_version": null,
|
18 |
+
"mteb_version": "0.0.2"
|
19 |
+
}
|
results/LASER2/BUCC.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"de-en": {
|
6 |
+
"accuracy": 0.9926931106471816,
|
7 |
+
"f1": 0.9921016005567153,
|
8 |
+
"precision": 0.9918058455114822,
|
9 |
+
"recall": 0.9926931106471816
|
10 |
+
},
|
11 |
+
"evaluation_time": 642.77,
|
12 |
+
"fr-en": {
|
13 |
+
"accuracy": 0.985362095531587,
|
14 |
+
"f1": 0.9838946364370093,
|
15 |
+
"precision": 0.9831609068897205,
|
16 |
+
"recall": 0.985362095531587
|
17 |
+
},
|
18 |
+
"ru-en": {
|
19 |
+
"accuracy": 0.9774160027710426,
|
20 |
+
"f1": 0.9762152176423046,
|
21 |
+
"precision": 0.9756148250779356,
|
22 |
+
"recall": 0.9774160027710426
|
23 |
+
},
|
24 |
+
"zh-en": {
|
25 |
+
"accuracy": 0.9778830963665087,
|
26 |
+
"f1": 0.9770054414604177,
|
27 |
+
"precision": 0.9765666140073723,
|
28 |
+
"recall": 0.9778830963665087
|
29 |
+
}
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/Banking77Classification.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"accuracy": 0.5775974025974026,
|
4 |
+
"accuracy_stderr": 0.01037438007056524,
|
5 |
+
"evaluation_time": 121.97,
|
6 |
+
"f1": 0.5693279554001911,
|
7 |
+
"f1_stderr": 0.010505608700462006,
|
8 |
+
"main_score": 0.5775974025974026
|
9 |
+
},
|
10 |
+
"dataset_version": null,
|
11 |
+
"mteb_version": "0.0.2"
|
12 |
+
}
|
results/LASER2/BiorxivClusteringP2P.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 768.68,
|
4 |
+
"v_measure": 0.12399936477309108,
|
5 |
+
"v_measure_std": 0.005255888066724005
|
6 |
+
},
|
7 |
+
"dataset_version": null,
|
8 |
+
"mteb_version": "0.0.2"
|
9 |
+
}
|
results/LASER2/BiorxivClusteringS2S.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 85.25,
|
4 |
+
"v_measure": 0.08827421024926384,
|
5 |
+
"v_measure_std": 0.005326348835553592
|
6 |
+
},
|
7 |
+
"dataset_version": null,
|
8 |
+
"mteb_version": "0.0.2"
|
9 |
+
}
|
results/LASER2/CQADupstackAndroidRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 91.48,
|
6 |
+
"map_at_1": 0.0,
|
7 |
+
"map_at_10": 0.0,
|
8 |
+
"map_at_100": 0.0,
|
9 |
+
"map_at_1000": 0.0,
|
10 |
+
"map_at_3": 0.0,
|
11 |
+
"map_at_5": 0.0,
|
12 |
+
"ndcg_at_1": 0.0,
|
13 |
+
"ndcg_at_10": 0.0,
|
14 |
+
"ndcg_at_100": 0.0,
|
15 |
+
"ndcg_at_1000": 0.0,
|
16 |
+
"ndcg_at_3": 0.0,
|
17 |
+
"ndcg_at_5": 0.0,
|
18 |
+
"precision_at_1": 0.0,
|
19 |
+
"precision_at_10": 0.0,
|
20 |
+
"precision_at_100": 0.0,
|
21 |
+
"precision_at_1000": 0.0,
|
22 |
+
"precision_at_3": 0.0,
|
23 |
+
"precision_at_5": 0.0,
|
24 |
+
"recall_at_1": 0.0,
|
25 |
+
"recall_at_10": 0.0,
|
26 |
+
"recall_at_100": 0.0,
|
27 |
+
"recall_at_1000": 0.0,
|
28 |
+
"recall_at_3": 0.0,
|
29 |
+
"recall_at_5": 0.0
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackEnglishRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 101.88,
|
6 |
+
"map_at_1": 0.0418,
|
7 |
+
"map_at_10": 0.06151,
|
8 |
+
"map_at_100": 0.06587,
|
9 |
+
"map_at_1000": 0.06677,
|
10 |
+
"map_at_3": 0.05546,
|
11 |
+
"map_at_5": 0.05904,
|
12 |
+
"ndcg_at_1": 0.0535,
|
13 |
+
"ndcg_at_10": 0.07521,
|
14 |
+
"ndcg_at_100": 0.09953,
|
15 |
+
"ndcg_at_1000": 0.12755,
|
16 |
+
"ndcg_at_3": 0.06367,
|
17 |
+
"ndcg_at_5": 0.06975,
|
18 |
+
"precision_at_1": 0.0535,
|
19 |
+
"precision_at_10": 0.01459,
|
20 |
+
"precision_at_100": 0.00331,
|
21 |
+
"precision_at_1000": 0.00076,
|
22 |
+
"precision_at_3": 0.031,
|
23 |
+
"precision_at_5": 0.02318,
|
24 |
+
"recall_at_1": 0.0418,
|
25 |
+
"recall_at_10": 0.10225,
|
26 |
+
"recall_at_100": 0.21357,
|
27 |
+
"recall_at_1000": 0.41667,
|
28 |
+
"recall_at_3": 0.06958,
|
29 |
+
"recall_at_5": 0.08551
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackGamingRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 147.83,
|
6 |
+
"map_at_1": 0.05906,
|
7 |
+
"map_at_10": 0.08391,
|
8 |
+
"map_at_100": 0.08922,
|
9 |
+
"map_at_1000": 0.09014,
|
10 |
+
"map_at_3": 0.07512,
|
11 |
+
"map_at_5": 0.07958,
|
12 |
+
"ndcg_at_1": 0.06897,
|
13 |
+
"ndcg_at_10": 0.1013,
|
14 |
+
"ndcg_at_100": 0.13153,
|
15 |
+
"ndcg_at_1000": 0.16093,
|
16 |
+
"ndcg_at_3": 0.08346,
|
17 |
+
"ndcg_at_5": 0.09095,
|
18 |
+
"precision_at_1": 0.06897,
|
19 |
+
"precision_at_10": 0.01799,
|
20 |
+
"precision_at_100": 0.00366,
|
21 |
+
"precision_at_1000": 0.00068,
|
22 |
+
"precision_at_3": 0.03845,
|
23 |
+
"precision_at_5": 0.02796,
|
24 |
+
"recall_at_1": 0.05906,
|
25 |
+
"recall_at_10": 0.1418,
|
26 |
+
"recall_at_100": 0.28657,
|
27 |
+
"recall_at_1000": 0.51596,
|
28 |
+
"recall_at_3": 0.09328,
|
29 |
+
"recall_at_5": 0.11166
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackGisRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 324.7,
|
6 |
+
"map_at_1": 0.01808,
|
7 |
+
"map_at_10": 0.02773,
|
8 |
+
"map_at_100": 0.03035,
|
9 |
+
"map_at_1000": 0.03104,
|
10 |
+
"map_at_3": 0.02467,
|
11 |
+
"map_at_5": 0.02658,
|
12 |
+
"ndcg_at_1": 0.02034,
|
13 |
+
"ndcg_at_10": 0.03397,
|
14 |
+
"ndcg_at_100": 0.05043,
|
15 |
+
"ndcg_at_1000": 0.07373,
|
16 |
+
"ndcg_at_3": 0.02754,
|
17 |
+
"ndcg_at_5": 0.03101,
|
18 |
+
"precision_at_1": 0.02034,
|
19 |
+
"precision_at_10": 0.00565,
|
20 |
+
"precision_at_100": 0.0015,
|
21 |
+
"precision_at_1000": 0.00038,
|
22 |
+
"precision_at_3": 0.01205,
|
23 |
+
"precision_at_5": 0.00904,
|
24 |
+
"recall_at_1": 0.01808,
|
25 |
+
"recall_at_10": 0.05104,
|
26 |
+
"recall_at_100": 0.13422,
|
27 |
+
"recall_at_1000": 0.31965,
|
28 |
+
"recall_at_3": 0.0339,
|
29 |
+
"recall_at_5": 0.042
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackMathematicaRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 217.6,
|
6 |
+
"map_at_1": 0.01116,
|
7 |
+
"map_at_10": 0.01733,
|
8 |
+
"map_at_100": 0.02,
|
9 |
+
"map_at_1000": 0.02081,
|
10 |
+
"map_at_3": 0.01452,
|
11 |
+
"map_at_5": 0.0161,
|
12 |
+
"ndcg_at_1": 0.01493,
|
13 |
+
"ndcg_at_10": 0.02331,
|
14 |
+
"ndcg_at_100": 0.03985,
|
15 |
+
"ndcg_at_1000": 0.06932,
|
16 |
+
"ndcg_at_3": 0.01734,
|
17 |
+
"ndcg_at_5": 0.02033,
|
18 |
+
"precision_at_1": 0.01493,
|
19 |
+
"precision_at_10": 0.00485,
|
20 |
+
"precision_at_100": 0.00162,
|
21 |
+
"precision_at_1000": 0.0005,
|
22 |
+
"precision_at_3": 0.00912,
|
23 |
+
"precision_at_5": 0.00746,
|
24 |
+
"recall_at_1": 0.01116,
|
25 |
+
"recall_at_10": 0.03629,
|
26 |
+
"recall_at_100": 0.11457,
|
27 |
+
"recall_at_1000": 0.34389,
|
28 |
+
"recall_at_3": 0.02008,
|
29 |
+
"recall_at_5": 0.02748
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackPhysicsRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 209.46,
|
6 |
+
"map_at_1": 0.03631,
|
7 |
+
"map_at_10": 0.05496,
|
8 |
+
"map_at_100": 0.05935,
|
9 |
+
"map_at_1000": 0.0603,
|
10 |
+
"map_at_3": 0.05063,
|
11 |
+
"map_at_5": 0.05293,
|
12 |
+
"ndcg_at_1": 0.04812,
|
13 |
+
"ndcg_at_10": 0.06844,
|
14 |
+
"ndcg_at_100": 0.09373,
|
15 |
+
"ndcg_at_1000": 0.12299,
|
16 |
+
"ndcg_at_3": 0.06059,
|
17 |
+
"ndcg_at_5": 0.06386,
|
18 |
+
"precision_at_1": 0.04812,
|
19 |
+
"precision_at_10": 0.01347,
|
20 |
+
"precision_at_100": 0.00319,
|
21 |
+
"precision_at_1000": 0.0007,
|
22 |
+
"precision_at_3": 0.03144,
|
23 |
+
"precision_at_5": 0.02214,
|
24 |
+
"recall_at_1": 0.03631,
|
25 |
+
"recall_at_10": 0.09384,
|
26 |
+
"recall_at_100": 0.20952,
|
27 |
+
"recall_at_1000": 0.42465,
|
28 |
+
"recall_at_3": 0.06884,
|
29 |
+
"recall_at_5": 0.07864
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackProgrammersRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 222.46,
|
6 |
+
"map_at_1": 0.03015,
|
7 |
+
"map_at_10": 0.04033,
|
8 |
+
"map_at_100": 0.04335,
|
9 |
+
"map_at_1000": 0.04404,
|
10 |
+
"map_at_3": 0.03578,
|
11 |
+
"map_at_5": 0.03706,
|
12 |
+
"ndcg_at_1": 0.04224,
|
13 |
+
"ndcg_at_10": 0.05053,
|
14 |
+
"ndcg_at_100": 0.06996,
|
15 |
+
"ndcg_at_1000": 0.09367,
|
16 |
+
"ndcg_at_3": 0.04125,
|
17 |
+
"ndcg_at_5": 0.04305,
|
18 |
+
"precision_at_1": 0.04224,
|
19 |
+
"precision_at_10": 0.00959,
|
20 |
+
"precision_at_100": 0.00232,
|
21 |
+
"precision_at_1000": 0.00052,
|
22 |
+
"precision_at_3": 0.01941,
|
23 |
+
"precision_at_5": 0.01324,
|
24 |
+
"recall_at_1": 0.03015,
|
25 |
+
"recall_at_10": 0.07077,
|
26 |
+
"recall_at_100": 0.16386,
|
27 |
+
"recall_at_1000": 0.34298,
|
28 |
+
"recall_at_3": 0.04318,
|
29 |
+
"recall_at_5": 0.0486
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 485.55,
|
6 |
+
"map_at_1": 0.02353666666666667,
|
7 |
+
"map_at_10": 0.033482500000000005,
|
8 |
+
"map_at_100": 0.0360425,
|
9 |
+
"map_at_1000": 0.03663416666666667,
|
10 |
+
"map_at_3": 0.029990833333333335,
|
11 |
+
"map_at_5": 0.031795833333333336,
|
12 |
+
"ndcg_at_1": 0.02917833333333333,
|
13 |
+
"ndcg_at_10": 0.04119,
|
14 |
+
"ndcg_at_100": 0.056311666666666677,
|
15 |
+
"ndcg_at_1000": 0.07594583333333334,
|
16 |
+
"ndcg_at_3": 0.034133333333333335,
|
17 |
+
"ndcg_at_5": 0.03712166666666667,
|
18 |
+
"precision_at_1": 0.02917833333333333,
|
19 |
+
"precision_at_10": 0.007701666666666667,
|
20 |
+
"precision_at_100": 0.0017991666666666666,
|
21 |
+
"precision_at_1000": 0.00041666666666666664,
|
22 |
+
"precision_at_3": 0.016209166666666667,
|
23 |
+
"precision_at_5": 0.011824999999999999,
|
24 |
+
"recall_at_1": 0.02353666666666667,
|
25 |
+
"recall_at_10": 0.0576375,
|
26 |
+
"recall_at_100": 0.1290925,
|
27 |
+
"recall_at_1000": 0.279035,
|
28 |
+
"recall_at_3": 0.03772166666666667,
|
29 |
+
"recall_at_5": 0.04548166666666667
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackStatsRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 344.51,
|
6 |
+
"map_at_1": 0.03055,
|
7 |
+
"map_at_10": 0.04272,
|
8 |
+
"map_at_100": 0.0457,
|
9 |
+
"map_at_1000": 0.04643,
|
10 |
+
"map_at_3": 0.03867,
|
11 |
+
"map_at_5": 0.04104,
|
12 |
+
"ndcg_at_1": 0.03681,
|
13 |
+
"ndcg_at_10": 0.05179,
|
14 |
+
"ndcg_at_100": 0.06878,
|
15 |
+
"ndcg_at_1000": 0.0944,
|
16 |
+
"ndcg_at_3": 0.04365,
|
17 |
+
"ndcg_at_5": 0.04723,
|
18 |
+
"precision_at_1": 0.03681,
|
19 |
+
"precision_at_10": 0.00982,
|
20 |
+
"precision_at_100": 0.00204,
|
21 |
+
"precision_at_1000": 0.00048,
|
22 |
+
"precision_at_3": 0.02096,
|
23 |
+
"precision_at_5": 0.01472,
|
24 |
+
"recall_at_1": 0.03055,
|
25 |
+
"recall_at_10": 0.0699,
|
26 |
+
"recall_at_100": 0.15083,
|
27 |
+
"recall_at_1000": 0.35566,
|
28 |
+
"recall_at_3": 0.04728,
|
29 |
+
"recall_at_5": 0.05725
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackTexRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 1027.41,
|
6 |
+
"map_at_1": 0.02132,
|
7 |
+
"map_at_10": 0.02908,
|
8 |
+
"map_at_100": 0.03136,
|
9 |
+
"map_at_1000": 0.03195,
|
10 |
+
"map_at_3": 0.02581,
|
11 |
+
"map_at_5": 0.02767,
|
12 |
+
"ndcg_at_1": 0.02512,
|
13 |
+
"ndcg_at_10": 0.03569,
|
14 |
+
"ndcg_at_100": 0.04952,
|
15 |
+
"ndcg_at_1000": 0.06975,
|
16 |
+
"ndcg_at_3": 0.02911,
|
17 |
+
"ndcg_at_5": 0.03214,
|
18 |
+
"precision_at_1": 0.02512,
|
19 |
+
"precision_at_10": 0.00664,
|
20 |
+
"precision_at_100": 0.0017,
|
21 |
+
"precision_at_1000": 0.00042,
|
22 |
+
"precision_at_3": 0.01342,
|
23 |
+
"precision_at_5": 0.00998,
|
24 |
+
"recall_at_1": 0.02132,
|
25 |
+
"recall_at_10": 0.05016,
|
26 |
+
"recall_at_100": 0.11483,
|
27 |
+
"recall_at_1000": 0.26865,
|
28 |
+
"recall_at_3": 0.03175,
|
29 |
+
"recall_at_5": 0.0398
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackUnixRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 528.37,
|
6 |
+
"map_at_1": 0.03401,
|
7 |
+
"map_at_10": 0.04402,
|
8 |
+
"map_at_100": 0.04709,
|
9 |
+
"map_at_1000": 0.04787,
|
10 |
+
"map_at_3": 0.03923,
|
11 |
+
"map_at_5": 0.04155,
|
12 |
+
"ndcg_at_1": 0.04011,
|
13 |
+
"ndcg_at_10": 0.05332,
|
14 |
+
"ndcg_at_100": 0.07162,
|
15 |
+
"ndcg_at_1000": 0.09671,
|
16 |
+
"ndcg_at_3": 0.04299,
|
17 |
+
"ndcg_at_5": 0.04714,
|
18 |
+
"precision_at_1": 0.04011,
|
19 |
+
"precision_at_10": 0.00942,
|
20 |
+
"precision_at_100": 0.00215,
|
21 |
+
"precision_at_1000": 0.0005,
|
22 |
+
"precision_at_3": 0.01866,
|
23 |
+
"precision_at_5": 0.01418,
|
24 |
+
"recall_at_1": 0.03401,
|
25 |
+
"recall_at_10": 0.07361,
|
26 |
+
"recall_at_100": 0.15881,
|
27 |
+
"recall_at_1000": 0.34893,
|
28 |
+
"recall_at_3": 0.04477,
|
29 |
+
"recall_at_5": 0.05484
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackWebmastersRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 16.59,
|
6 |
+
"map_at_1": 0.0,
|
7 |
+
"map_at_10": 0.0002,
|
8 |
+
"map_at_100": 0.00022,
|
9 |
+
"map_at_1000": 0.00026,
|
10 |
+
"map_at_3": 0.0,
|
11 |
+
"map_at_5": 0.0,
|
12 |
+
"ndcg_at_1": 0.0,
|
13 |
+
"ndcg_at_10": 0.00072,
|
14 |
+
"ndcg_at_100": 0.00079,
|
15 |
+
"ndcg_at_1000": 0.0023,
|
16 |
+
"ndcg_at_3": 0.0,
|
17 |
+
"ndcg_at_5": 0.0,
|
18 |
+
"precision_at_1": 0.0,
|
19 |
+
"precision_at_10": 0.0004,
|
20 |
+
"precision_at_100": 0.0001,
|
21 |
+
"precision_at_1000": 6e-05,
|
22 |
+
"precision_at_3": 0.0,
|
23 |
+
"precision_at_5": 0.0,
|
24 |
+
"recall_at_1": 0.0,
|
25 |
+
"recall_at_10": 0.00199,
|
26 |
+
"recall_at_100": 0.00233,
|
27 |
+
"recall_at_1000": 0.01138,
|
28 |
+
"recall_at_3": 0.0,
|
29 |
+
"recall_at_5": 0.0
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/CQADupstackWordpressRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 485.55,
|
6 |
+
"map_at_1": 0.0,
|
7 |
+
"map_at_10": 0.0,
|
8 |
+
"map_at_100": 0.0,
|
9 |
+
"map_at_1000": 0.0,
|
10 |
+
"map_at_3": 0.0,
|
11 |
+
"map_at_5": 0.0,
|
12 |
+
"ndcg_at_1": 0.0,
|
13 |
+
"ndcg_at_10": 0.0,
|
14 |
+
"ndcg_at_100": 0.0,
|
15 |
+
"ndcg_at_1000": 0.0,
|
16 |
+
"ndcg_at_3": 0.0,
|
17 |
+
"ndcg_at_5": 0.0,
|
18 |
+
"precision_at_1": 0.0,
|
19 |
+
"precision_at_10": 0.0,
|
20 |
+
"precision_at_100": 0.0,
|
21 |
+
"precision_at_1000": 0.0,
|
22 |
+
"precision_at_3": 0.0,
|
23 |
+
"precision_at_5": 0.0,
|
24 |
+
"recall_at_1": 0.0,
|
25 |
+
"recall_at_10": 0.0,
|
26 |
+
"recall_at_100": 0.0,
|
27 |
+
"recall_at_1000": 0.0,
|
28 |
+
"recall_at_3": 0.0,
|
29 |
+
"recall_at_5": 0.0
|
30 |
+
}
|
31 |
+
}
|
results/LASER2/ClimateFEVER.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 14616.31,
|
4 |
+
"map_at_1": 0.0017,
|
5 |
+
"map_at_10": 0.00242,
|
6 |
+
"map_at_100": 0.00249,
|
7 |
+
"map_at_1000": 0.00253,
|
8 |
+
"map_at_3": 0.00216,
|
9 |
+
"map_at_5": 0.00236,
|
10 |
+
"ndcg_at_1": 0.00391,
|
11 |
+
"ndcg_at_10": 0.0036,
|
12 |
+
"ndcg_at_100": 0.00436,
|
13 |
+
"ndcg_at_1000": 0.00594,
|
14 |
+
"ndcg_at_3": 0.00321,
|
15 |
+
"ndcg_at_5": 0.0034,
|
16 |
+
"precision_at_1": 0.00391,
|
17 |
+
"precision_at_10": 0.00098,
|
18 |
+
"precision_at_100": 0.00019,
|
19 |
+
"precision_at_1000": 5e-05,
|
20 |
+
"precision_at_3": 0.00239,
|
21 |
+
"precision_at_5": 0.00169,
|
22 |
+
"recall_at_1": 0.0017,
|
23 |
+
"recall_at_10": 0.00409,
|
24 |
+
"recall_at_100": 0.00711,
|
25 |
+
"recall_at_1000": 0.0171,
|
26 |
+
"recall_at_3": 0.00279,
|
27 |
+
"recall_at_5": 0.00366
|
28 |
+
},
|
29 |
+
"dataset_version": null,
|
30 |
+
"mteb_version": "0.0.2"
|
31 |
+
}
|
results/LASER2/DBPedia.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 5917.84,
|
4 |
+
"map_at_1": 0.00141,
|
5 |
+
"map_at_10": 0.00304,
|
6 |
+
"map_at_100": 0.0043,
|
7 |
+
"map_at_1000": 0.0048,
|
8 |
+
"map_at_3": 0.00219,
|
9 |
+
"map_at_5": 0.00252,
|
10 |
+
"ndcg_at_1": 0.0275,
|
11 |
+
"ndcg_at_10": 0.01526,
|
12 |
+
"ndcg_at_100": 0.0154,
|
13 |
+
"ndcg_at_1000": 0.02439,
|
14 |
+
"ndcg_at_3": 0.0202,
|
15 |
+
"ndcg_at_5": 0.01735,
|
16 |
+
"precision_at_1": 0.04,
|
17 |
+
"precision_at_10": 0.016,
|
18 |
+
"precision_at_100": 0.00582,
|
19 |
+
"precision_at_1000": 0.00199,
|
20 |
+
"precision_at_3": 0.0275,
|
21 |
+
"precision_at_5": 0.021,
|
22 |
+
"recall_at_1": 0.00141,
|
23 |
+
"recall_at_10": 0.00557,
|
24 |
+
"recall_at_100": 0.01832,
|
25 |
+
"recall_at_1000": 0.05513,
|
26 |
+
"recall_at_3": 0.00273,
|
27 |
+
"recall_at_5": 0.00369
|
28 |
+
},
|
29 |
+
"dataset_version": null,
|
30 |
+
"mteb_version": "0.0.2"
|
31 |
+
}
|
results/LASER2/EmotionClassification.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"accuracy": 0.24830000000000002,
|
4 |
+
"accuracy_stderr": 0.03350611884417532,
|
5 |
+
"evaluation_time": 114.99,
|
6 |
+
"f1": 0.22363001081759562,
|
7 |
+
"f1_stderr": 0.028095131986252592,
|
8 |
+
"main_score": 0.24830000000000002
|
9 |
+
},
|
10 |
+
"dataset_version": null,
|
11 |
+
"mteb_version": "0.0.2"
|
12 |
+
}
|
results/LASER2/FEVER.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 16228.4,
|
4 |
+
"map_at_1": 0.00572,
|
5 |
+
"map_at_10": 0.00687,
|
6 |
+
"map_at_100": 0.00718,
|
7 |
+
"map_at_1000": 0.00724,
|
8 |
+
"map_at_3": 0.0064,
|
9 |
+
"map_at_5": 0.00666,
|
10 |
+
"ndcg_at_1": 0.006,
|
11 |
+
"ndcg_at_10": 0.00767,
|
12 |
+
"ndcg_at_100": 0.0093,
|
13 |
+
"ndcg_at_1000": 0.01125,
|
14 |
+
"ndcg_at_3": 0.00672,
|
15 |
+
"ndcg_at_5": 0.00718,
|
16 |
+
"precision_at_1": 0.006,
|
17 |
+
"precision_at_10": 0.00104,
|
18 |
+
"precision_at_100": 0.00019,
|
19 |
+
"precision_at_1000": 4e-05,
|
20 |
+
"precision_at_3": 0.00255,
|
21 |
+
"precision_at_5": 0.00177,
|
22 |
+
"recall_at_1": 0.00572,
|
23 |
+
"recall_at_10": 0.01,
|
24 |
+
"recall_at_100": 0.0178,
|
25 |
+
"recall_at_1000": 0.03382,
|
26 |
+
"recall_at_3": 0.0073,
|
27 |
+
"recall_at_5": 0.0085
|
28 |
+
},
|
29 |
+
"dataset_version": null,
|
30 |
+
"mteb_version": "0.0.2"
|
31 |
+
}
|
results/LASER2/FiQA2018.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 233.94,
|
4 |
+
"map_at_1": 0.00421,
|
5 |
+
"map_at_10": 0.01026,
|
6 |
+
"map_at_100": 0.01161,
|
7 |
+
"map_at_1000": 0.01212,
|
8 |
+
"map_at_3": 0.00814,
|
9 |
+
"map_at_5": 0.00903,
|
10 |
+
"ndcg_at_1": 0.00926,
|
11 |
+
"ndcg_at_10": 0.01725,
|
12 |
+
"ndcg_at_100": 0.02736,
|
13 |
+
"ndcg_at_1000": 0.04678,
|
14 |
+
"ndcg_at_3": 0.0134,
|
15 |
+
"ndcg_at_5": 0.01445,
|
16 |
+
"precision_at_1": 0.00926,
|
17 |
+
"precision_at_10": 0.00602,
|
18 |
+
"precision_at_100": 0.00182,
|
19 |
+
"precision_at_1000": 0.00052,
|
20 |
+
"precision_at_3": 0.0108,
|
21 |
+
"precision_at_5": 0.00864,
|
22 |
+
"recall_at_1": 0.00421,
|
23 |
+
"recall_at_10": 0.02583,
|
24 |
+
"recall_at_100": 0.06514,
|
25 |
+
"recall_at_1000": 0.19262,
|
26 |
+
"recall_at_3": 0.01344,
|
27 |
+
"recall_at_5": 0.01738
|
28 |
+
},
|
29 |
+
"dataset_version": null,
|
30 |
+
"mteb_version": "0.0.2"
|
31 |
+
}
|
results/LASER2/HotpotQA.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 7848.6,
|
4 |
+
"map_at_1": 0.03167,
|
5 |
+
"map_at_10": 0.04056,
|
6 |
+
"map_at_100": 0.04202,
|
7 |
+
"map_at_1000": 0.04232,
|
8 |
+
"map_at_3": 0.03754,
|
9 |
+
"map_at_5": 0.03914,
|
10 |
+
"ndcg_at_1": 0.06334,
|
11 |
+
"ndcg_at_10": 0.05504,
|
12 |
+
"ndcg_at_100": 0.06469,
|
13 |
+
"ndcg_at_1000": 0.0756,
|
14 |
+
"ndcg_at_3": 0.04785,
|
15 |
+
"ndcg_at_5": 0.0512,
|
16 |
+
"precision_at_1": 0.06334,
|
17 |
+
"precision_at_10": 0.01214,
|
18 |
+
"precision_at_100": 0.00201,
|
19 |
+
"precision_at_1000": 0.00035,
|
20 |
+
"precision_at_3": 0.02957,
|
21 |
+
"precision_at_5": 0.02039,
|
22 |
+
"recall_at_1": 0.03167,
|
23 |
+
"recall_at_10": 0.0607,
|
24 |
+
"recall_at_100": 0.10061,
|
25 |
+
"recall_at_1000": 0.17508,
|
26 |
+
"recall_at_3": 0.04436,
|
27 |
+
"recall_at_5": 0.05098
|
28 |
+
},
|
29 |
+
"dataset_version": null,
|
30 |
+
"mteb_version": "0.0.2"
|
31 |
+
}
|
results/LASER2/ImdbClassification.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"accuracy": 0.57584,
|
4 |
+
"accuracy_stderr": 0.027472639480035414,
|
5 |
+
"ap": 0.5455790619149001,
|
6 |
+
"ap_stderr": 0.0190473646119646,
|
7 |
+
"evaluation_time": 2045.42,
|
8 |
+
"f1": 0.5721092756521572,
|
9 |
+
"f1_stderr": 0.02840547286714844,
|
10 |
+
"main_score": 0.57584
|
11 |
+
},
|
12 |
+
"dataset_version": null,
|
13 |
+
"mteb_version": "0.0.2"
|
14 |
+
}
|
results/LASER2/MSMARCO.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"dev": {
|
5 |
+
"evaluation_time": 14000.54,
|
6 |
+
"map_at_1": 0.0053,
|
7 |
+
"map_at_10": 0.00883,
|
8 |
+
"map_at_100": 0.01009,
|
9 |
+
"map_at_1000": 0.01042,
|
10 |
+
"map_at_3": 0.00775,
|
11 |
+
"map_at_5": 0.00829,
|
12 |
+
"ndcg_at_1": 0.00544,
|
13 |
+
"ndcg_at_10": 0.01087,
|
14 |
+
"ndcg_at_100": 0.01866,
|
15 |
+
"ndcg_at_1000": 0.0308,
|
16 |
+
"ndcg_at_3": 0.00854,
|
17 |
+
"ndcg_at_5": 0.00953,
|
18 |
+
"precision_at_1": 0.00544,
|
19 |
+
"precision_at_10": 0.00176,
|
20 |
+
"precision_at_100": 0.00059,
|
21 |
+
"precision_at_1000": 0.00017,
|
22 |
+
"precision_at_3": 0.00368,
|
23 |
+
"precision_at_5": 0.00269,
|
24 |
+
"recall_at_1": 0.0053,
|
25 |
+
"recall_at_10": 0.01734,
|
26 |
+
"recall_at_100": 0.05722,
|
27 |
+
"recall_at_1000": 0.15848,
|
28 |
+
"recall_at_3": 0.01074,
|
29 |
+
"recall_at_5": 0.01318
|
30 |
+
},
|
31 |
+
"test": {
|
32 |
+
"evaluation_time": 11497.8,
|
33 |
+
"map_at_1": 0.00015,
|
34 |
+
"map_at_10": 0.00195,
|
35 |
+
"map_at_100": 0.00444,
|
36 |
+
"map_at_1000": 0.00628,
|
37 |
+
"map_at_3": 0.00091,
|
38 |
+
"map_at_5": 0.00131,
|
39 |
+
"ndcg_at_1": 0.03101,
|
40 |
+
"ndcg_at_10": 0.03593,
|
41 |
+
"ndcg_at_100": 0.02811,
|
42 |
+
"ndcg_at_1000": 0.04373,
|
43 |
+
"ndcg_at_3": 0.03705,
|
44 |
+
"ndcg_at_5": 0.0394,
|
45 |
+
"precision_at_1": 0.04651,
|
46 |
+
"precision_at_10": 0.05116,
|
47 |
+
"precision_at_100": 0.02256,
|
48 |
+
"precision_at_1000": 0.00751,
|
49 |
+
"precision_at_3": 0.06202,
|
50 |
+
"precision_at_5": 0.06047,
|
51 |
+
"recall_at_1": 0.00015,
|
52 |
+
"recall_at_10": 0.00374,
|
53 |
+
"recall_at_100": 0.01999,
|
54 |
+
"recall_at_1000": 0.0669,
|
55 |
+
"recall_at_3": 0.00186,
|
56 |
+
"recall_at_5": 0.00244
|
57 |
+
}
|
58 |
+
}
|
results/LASER2/MTOPDomainClassification.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"de": {
|
6 |
+
"accuracy": 0.7407720484643561,
|
7 |
+
"accuracy_stderr": 0.02097470751351384,
|
8 |
+
"f1": 0.7246747959017267,
|
9 |
+
"f1_stderr": 0.021409255315184686,
|
10 |
+
"main_score": 0.7407720484643561
|
11 |
+
},
|
12 |
+
"en": {
|
13 |
+
"accuracy": 0.7535795713634291,
|
14 |
+
"accuracy_stderr": 0.01932929756272018,
|
15 |
+
"f1": 0.7471023646717295,
|
16 |
+
"f1_stderr": 0.020603379350450358,
|
17 |
+
"main_score": 0.7535795713634291
|
18 |
+
},
|
19 |
+
"es": {
|
20 |
+
"accuracy": 0.7346897931954637,
|
21 |
+
"accuracy_stderr": 0.029275171505061988,
|
22 |
+
"f1": 0.7201695057514836,
|
23 |
+
"f1_stderr": 0.02619166045098598,
|
24 |
+
"main_score": 0.7346897931954637
|
25 |
+
},
|
26 |
+
"evaluation_time": 238.88,
|
27 |
+
"fr": {
|
28 |
+
"accuracy": 0.7226119636705294,
|
29 |
+
"accuracy_stderr": 0.017579729530633047,
|
30 |
+
"f1": 0.7138676065809201,
|
31 |
+
"f1_stderr": 0.016450702159748233,
|
32 |
+
"main_score": 0.7226119636705294
|
33 |
+
},
|
34 |
+
"hi": {
|
35 |
+
"accuracy": 0.7295087845105772,
|
36 |
+
"accuracy_stderr": 0.022688800454798208,
|
37 |
+
"f1": 0.7163844311220117,
|
38 |
+
"f1_stderr": 0.019843811193564726,
|
39 |
+
"main_score": 0.7295087845105772
|
40 |
+
},
|
41 |
+
"th": {
|
42 |
+
"accuracy": 0.7267631103074141,
|
43 |
+
"accuracy_stderr": 0.014703529100373161,
|
44 |
+
"f1": 0.7222556760062775,
|
45 |
+
"f1_stderr": 0.012793360924583051,
|
46 |
+
"main_score": 0.7267631103074141
|
47 |
+
}
|
48 |
+
}
|
49 |
+
}
|
results/LASER2/MTOPIntentClassification.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"de": {
|
6 |
+
"accuracy": 0.5162299239222317,
|
7 |
+
"accuracy_stderr": 0.01832258118122447,
|
8 |
+
"f1": 0.3256925158951781,
|
9 |
+
"f1_stderr": 0.006031602034364266,
|
10 |
+
"main_score": 0.5162299239222317
|
11 |
+
},
|
12 |
+
"en": {
|
13 |
+
"accuracy": 0.49473324213406294,
|
14 |
+
"accuracy_stderr": 0.026360858836492213,
|
15 |
+
"f1": 0.3300910657296617,
|
16 |
+
"f1_stderr": 0.012151253776376927,
|
17 |
+
"main_score": 0.49473324213406294
|
18 |
+
},
|
19 |
+
"es": {
|
20 |
+
"accuracy": 0.5274516344229486,
|
21 |
+
"accuracy_stderr": 0.01871901414866834,
|
22 |
+
"f1": 0.33394567108321266,
|
23 |
+
"f1_stderr": 0.012228976278261429,
|
24 |
+
"main_score": 0.5274516344229486
|
25 |
+
},
|
26 |
+
"evaluation_time": 288.21,
|
27 |
+
"fr": {
|
28 |
+
"accuracy": 0.5011901033510806,
|
29 |
+
"accuracy_stderr": 0.02349600059161113,
|
30 |
+
"f1": 0.33814182942295407,
|
31 |
+
"f1_stderr": 0.008555560889430382,
|
32 |
+
"main_score": 0.5011901033510806
|
33 |
+
},
|
34 |
+
"hi": {
|
35 |
+
"accuracy": 0.45546790964503403,
|
36 |
+
"accuracy_stderr": 0.019083595788646334,
|
37 |
+
"f1": 0.27716607594942344,
|
38 |
+
"f1_stderr": 0.008465873041149053,
|
39 |
+
"main_score": 0.45546790964503403
|
40 |
+
},
|
41 |
+
"th": {
|
42 |
+
"accuracy": 0.5006871609403254,
|
43 |
+
"accuracy_stderr": 0.032474576694908,
|
44 |
+
"f1": 0.3475254801351875,
|
45 |
+
"f1_stderr": 0.01064830577932404,
|
46 |
+
"main_score": 0.5006871609403254
|
47 |
+
}
|
48 |
+
}
|
49 |
+
}
|
results/LASER2/MassiveIntentClassification.json
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"af": {
|
6 |
+
"accuracy": 0.38012777404169473,
|
7 |
+
"accuracy_stderr": 0.018054485755774126,
|
8 |
+
"f1": 0.36372620791961896,
|
9 |
+
"f1_stderr": 0.011605337850752963,
|
10 |
+
"main_score": 0.38012777404169473
|
11 |
+
},
|
12 |
+
"am": {
|
13 |
+
"accuracy": 0.1269670477471419,
|
14 |
+
"accuracy_stderr": 0.024740686380275122,
|
15 |
+
"f1": 0.10125430985923822,
|
16 |
+
"f1_stderr": 0.014610275424102794,
|
17 |
+
"main_score": 0.1269670477471419
|
18 |
+
},
|
19 |
+
"ar": {
|
20 |
+
"accuracy": 0.3716207128446537,
|
21 |
+
"accuracy_stderr": 0.015242658586425109,
|
22 |
+
"f1": 0.3513819183071391,
|
23 |
+
"f1_stderr": 0.00952968827923218,
|
24 |
+
"main_score": 0.3716207128446537
|
25 |
+
},
|
26 |
+
"az": {
|
27 |
+
"accuracy": 0.19979825151311364,
|
28 |
+
"accuracy_stderr": 0.023512716506208713,
|
29 |
+
"f1": 0.20755182437536165,
|
30 |
+
"f1_stderr": 0.020871688941913907,
|
31 |
+
"main_score": 0.19979825151311364
|
32 |
+
},
|
33 |
+
"bn": {
|
34 |
+
"accuracy": 0.4251176866173504,
|
35 |
+
"accuracy_stderr": 0.015417634386490787,
|
36 |
+
"f1": 0.41808038563926464,
|
37 |
+
"f1_stderr": 0.015199386985110714,
|
38 |
+
"main_score": 0.4251176866173504
|
39 |
+
},
|
40 |
+
"cy": {
|
41 |
+
"accuracy": 0.17326832548755883,
|
42 |
+
"accuracy_stderr": 0.012898104386975457,
|
43 |
+
"f1": 0.18929774881076256,
|
44 |
+
"f1_stderr": 0.011323358864015197,
|
45 |
+
"main_score": 0.17326832548755883
|
46 |
+
},
|
47 |
+
"da": {
|
48 |
+
"accuracy": 0.4560860793544048,
|
49 |
+
"accuracy_stderr": 0.01951406090649724,
|
50 |
+
"f1": 0.4499828344382091,
|
51 |
+
"f1_stderr": 0.012363163669498014,
|
52 |
+
"main_score": 0.4560860793544048
|
53 |
+
},
|
54 |
+
"de": {
|
55 |
+
"accuracy": 0.44788164088769333,
|
56 |
+
"accuracy_stderr": 0.014665941706559757,
|
57 |
+
"f1": 0.4331277340788812,
|
58 |
+
"f1_stderr": 0.01522229039527465,
|
59 |
+
"main_score": 0.44788164088769333
|
60 |
+
},
|
61 |
+
"el": {
|
62 |
+
"accuracy": 0.4670813718897109,
|
63 |
+
"accuracy_stderr": 0.016337233490102906,
|
64 |
+
"f1": 0.4610946954649364,
|
65 |
+
"f1_stderr": 0.0176594232674652,
|
66 |
+
"main_score": 0.4670813718897109
|
67 |
+
},
|
68 |
+
"en": {
|
69 |
+
"accuracy": 0.4790854068594485,
|
70 |
+
"accuracy_stderr": 0.01717352517420073,
|
71 |
+
"f1": 0.464939146287881,
|
72 |
+
"f1_stderr": 0.012710556685691056,
|
73 |
+
"main_score": 0.4790854068594485
|
74 |
+
},
|
75 |
+
"es": {
|
76 |
+
"accuracy": 0.45437121721587087,
|
77 |
+
"accuracy_stderr": 0.014659040367775445,
|
78 |
+
"f1": 0.46286614708385815,
|
79 |
+
"f1_stderr": 0.01400822366938995,
|
80 |
+
"main_score": 0.45437121721587087
|
81 |
+
},
|
82 |
+
"evaluation_time": 2187.96,
|
83 |
+
"fa": {
|
84 |
+
"accuracy": 0.45013449899125757,
|
85 |
+
"accuracy_stderr": 0.018101267052589458,
|
86 |
+
"f1": 0.4440276709633043,
|
87 |
+
"f1_stderr": 0.02139785887315828,
|
88 |
+
"main_score": 0.45013449899125757
|
89 |
+
},
|
90 |
+
"fi": {
|
91 |
+
"accuracy": 0.45938130464021515,
|
92 |
+
"accuracy_stderr": 0.019983852698166247,
|
93 |
+
"f1": 0.4467651558171412,
|
94 |
+
"f1_stderr": 0.013228992239689133,
|
95 |
+
"main_score": 0.45938130464021515
|
96 |
+
},
|
97 |
+
"fr": {
|
98 |
+
"accuracy": 0.4613315400134499,
|
99 |
+
"accuracy_stderr": 0.019672058058454584,
|
100 |
+
"f1": 0.46149191584616656,
|
101 |
+
"f1_stderr": 0.01462338783534165,
|
102 |
+
"main_score": 0.4613315400134499
|
103 |
+
},
|
104 |
+
"he": {
|
105 |
+
"accuracy": 0.42545393409549426,
|
106 |
+
"accuracy_stderr": 0.015641146997013137,
|
107 |
+
"f1": 0.406277912154974,
|
108 |
+
"f1_stderr": 0.015808885221407522,
|
109 |
+
"main_score": 0.42545393409549426
|
110 |
+
},
|
111 |
+
"hi": {
|
112 |
+
"accuracy": 0.40201748486886346,
|
113 |
+
"accuracy_stderr": 0.014870504329345259,
|
114 |
+
"f1": 0.39955511381980663,
|
115 |
+
"f1_stderr": 0.012540162228863491,
|
116 |
+
"main_score": 0.40201748486886346
|
117 |
+
},
|
118 |
+
"hu": {
|
119 |
+
"accuracy": 0.4277404169468729,
|
120 |
+
"accuracy_stderr": 0.012916849604535326,
|
121 |
+
"f1": 0.41428552778550787,
|
122 |
+
"f1_stderr": 0.01796504857153477,
|
123 |
+
"main_score": 0.4277404169468729
|
124 |
+
},
|
125 |
+
"hy": {
|
126 |
+
"accuracy": 0.28073301950235374,
|
127 |
+
"accuracy_stderr": 0.022799686666722056,
|
128 |
+
"f1": 0.27060617914010276,
|
129 |
+
"f1_stderr": 0.011002544912943118,
|
130 |
+
"main_score": 0.28073301950235374
|
131 |
+
},
|
132 |
+
"id": {
|
133 |
+
"accuracy": 0.4581035642232683,
|
134 |
+
"accuracy_stderr": 0.01719550009501075,
|
135 |
+
"f1": 0.44698433663656323,
|
136 |
+
"f1_stderr": 0.016362307533275874,
|
137 |
+
"main_score": 0.4581035642232683
|
138 |
+
},
|
139 |
+
"is": {
|
140 |
+
"accuracy": 0.39862138533960995,
|
141 |
+
"accuracy_stderr": 0.016819937773966665,
|
142 |
+
"f1": 0.3920844117598715,
|
143 |
+
"f1_stderr": 0.015188173368411415,
|
144 |
+
"main_score": 0.39862138533960995
|
145 |
+
},
|
146 |
+
"it": {
|
147 |
+
"accuracy": 0.4825487558843308,
|
148 |
+
"accuracy_stderr": 0.017093447378236502,
|
149 |
+
"f1": 0.4800020656000982,
|
150 |
+
"f1_stderr": 0.014433139843477095,
|
151 |
+
"main_score": 0.4825487558843308
|
152 |
+
},
|
153 |
+
"ja": {
|
154 |
+
"accuracy": 0.45299260255548085,
|
155 |
+
"accuracy_stderr": 0.020810866845063326,
|
156 |
+
"f1": 0.45499154063652886,
|
157 |
+
"f1_stderr": 0.015152638500548954,
|
158 |
+
"main_score": 0.45299260255548085
|
159 |
+
},
|
160 |
+
"jv": {
|
161 |
+
"accuracy": 0.24303967720242098,
|
162 |
+
"accuracy_stderr": 0.018405242193104722,
|
163 |
+
"f1": 0.24206441275862223,
|
164 |
+
"f1_stderr": 0.01230622384839183,
|
165 |
+
"main_score": 0.24303967720242098
|
166 |
+
},
|
167 |
+
"ka": {
|
168 |
+
"accuracy": 0.22700067249495626,
|
169 |
+
"accuracy_stderr": 0.011315564480105716,
|
170 |
+
"f1": 0.2262620454603394,
|
171 |
+
"f1_stderr": 0.013641428742103908,
|
172 |
+
"main_score": 0.22700067249495626
|
173 |
+
},
|
174 |
+
"km": {
|
175 |
+
"accuracy": 0.22481506388702083,
|
176 |
+
"accuracy_stderr": 0.017626681644496683,
|
177 |
+
"f1": 0.20273821769692973,
|
178 |
+
"f1_stderr": 0.010423853100542939,
|
179 |
+
"main_score": 0.22481506388702083
|
180 |
+
},
|
181 |
+
"kn": {
|
182 |
+
"accuracy": 0.043207800941492944,
|
183 |
+
"accuracy_stderr": 0.011439581992919204,
|
184 |
+
"f1": 0.019591698863663035,
|
185 |
+
"f1_stderr": 0.004395348203545399,
|
186 |
+
"main_score": 0.043207800941492944
|
187 |
+
},
|
188 |
+
"ko": {
|
189 |
+
"accuracy": 0.4426025554808339,
|
190 |
+
"accuracy_stderr": 0.024004890918808426,
|
191 |
+
"f1": 0.44147618521379844,
|
192 |
+
"f1_stderr": 0.01371530289091307,
|
193 |
+
"main_score": 0.4426025554808339
|
194 |
+
},
|
195 |
+
"lv": {
|
196 |
+
"accuracy": 0.3975453934095495,
|
197 |
+
"accuracy_stderr": 0.02350514180018239,
|
198 |
+
"f1": 0.4061787392665471,
|
199 |
+
"f1_stderr": 0.02079966697693215,
|
200 |
+
"main_score": 0.3975453934095495
|
201 |
+
},
|
202 |
+
"ml": {
|
203 |
+
"accuracy": 0.4133490248823134,
|
204 |
+
"accuracy_stderr": 0.022600758621339218,
|
205 |
+
"f1": 0.40286261835633236,
|
206 |
+
"f1_stderr": 0.019466174082752453,
|
207 |
+
"main_score": 0.4133490248823134
|
208 |
+
},
|
209 |
+
"mn": {
|
210 |
+
"accuracy": 0.16200403496973773,
|
211 |
+
"accuracy_stderr": 0.0100095627651343,
|
212 |
+
"f1": 0.16450176344768086,
|
213 |
+
"f1_stderr": 0.01474426560593057,
|
214 |
+
"main_score": 0.16200403496973773
|
215 |
+
},
|
216 |
+
"ms": {
|
217 |
+
"accuracy": 0.4322797579018157,
|
218 |
+
"accuracy_stderr": 0.01759072503596667,
|
219 |
+
"f1": 0.4248684950682716,
|
220 |
+
"f1_stderr": 0.016635102291421434,
|
221 |
+
"main_score": 0.4322797579018157
|
222 |
+
},
|
223 |
+
"my": {
|
224 |
+
"accuracy": 0.25373234700739744,
|
225 |
+
"accuracy_stderr": 0.014838536825778608,
|
226 |
+
"f1": 0.2222952356057096,
|
227 |
+
"f1_stderr": 0.013501549124465934,
|
228 |
+
"main_score": 0.25373234700739744
|
229 |
+
},
|
230 |
+
"nb": {
|
231 |
+
"accuracy": 0.3773705447209146,
|
232 |
+
"accuracy_stderr": 0.021859215543374035,
|
233 |
+
"f1": 0.3822420276063557,
|
234 |
+
"f1_stderr": 0.01781935165480971,
|
235 |
+
"main_score": 0.3773705447209146
|
236 |
+
},
|
237 |
+
"nl": {
|
238 |
+
"accuracy": 0.45000000000000007,
|
239 |
+
"accuracy_stderr": 0.016798952275448243,
|
240 |
+
"f1": 0.4390949593879808,
|
241 |
+
"f1_stderr": 0.013457897429685057,
|
242 |
+
"main_score": 0.45000000000000007
|
243 |
+
},
|
244 |
+
"pl": {
|
245 |
+
"accuracy": 0.4499327505043712,
|
246 |
+
"accuracy_stderr": 0.018087145352772453,
|
247 |
+
"f1": 0.42978932594492064,
|
248 |
+
"f1_stderr": 0.020420111856607633,
|
249 |
+
"main_score": 0.4499327505043712
|
250 |
+
},
|
251 |
+
"pt": {
|
252 |
+
"accuracy": 0.4855413584398117,
|
253 |
+
"accuracy_stderr": 0.01347928867036143,
|
254 |
+
"f1": 0.48571088423157766,
|
255 |
+
"f1_stderr": 0.013222183663454462,
|
256 |
+
"main_score": 0.4855413584398117
|
257 |
+
},
|
258 |
+
"ro": {
|
259 |
+
"accuracy": 0.44300605245460656,
|
260 |
+
"accuracy_stderr": 0.021637858328300265,
|
261 |
+
"f1": 0.44740069972880264,
|
262 |
+
"f1_stderr": 0.01577190962835917,
|
263 |
+
"main_score": 0.44300605245460656
|
264 |
+
},
|
265 |
+
"ru": {
|
266 |
+
"accuracy": 0.44290517821116343,
|
267 |
+
"accuracy_stderr": 0.021596827649085326,
|
268 |
+
"f1": 0.43747519563352766,
|
269 |
+
"f1_stderr": 0.019105088547632505,
|
270 |
+
"main_score": 0.44290517821116343
|
271 |
+
},
|
272 |
+
"sl": {
|
273 |
+
"accuracy": 0.44717552118359116,
|
274 |
+
"accuracy_stderr": 0.01726980272383147,
|
275 |
+
"f1": 0.4583434006703727,
|
276 |
+
"f1_stderr": 0.016199198460333516,
|
277 |
+
"main_score": 0.44717552118359116
|
278 |
+
},
|
279 |
+
"sq": {
|
280 |
+
"accuracy": 0.4612306657700067,
|
281 |
+
"accuracy_stderr": 0.01641084055632617,
|
282 |
+
"f1": 0.4549674955169706,
|
283 |
+
"f1_stderr": 0.013851645495939875,
|
284 |
+
"main_score": 0.4612306657700067
|
285 |
+
},
|
286 |
+
"sv": {
|
287 |
+
"accuracy": 0.4594821788836584,
|
288 |
+
"accuracy_stderr": 0.020832831141935834,
|
289 |
+
"f1": 0.44306077100248525,
|
290 |
+
"f1_stderr": 0.019118675204039762,
|
291 |
+
"main_score": 0.4594821788836584
|
292 |
+
},
|
293 |
+
"sw": {
|
294 |
+
"accuracy": 0.31893073301950237,
|
295 |
+
"accuracy_stderr": 0.011235144820777232,
|
296 |
+
"f1": 0.31391383206208073,
|
297 |
+
"f1_stderr": 0.014373830497544215,
|
298 |
+
"main_score": 0.31893073301950237
|
299 |
+
},
|
300 |
+
"ta": {
|
301 |
+
"accuracy": 0.2963349024882313,
|
302 |
+
"accuracy_stderr": 0.012793365954792035,
|
303 |
+
"f1": 0.2888382113446147,
|
304 |
+
"f1_stderr": 0.01179745104077985,
|
305 |
+
"main_score": 0.2963349024882313
|
306 |
+
},
|
307 |
+
"te": {
|
308 |
+
"accuracy": 0.36028917283120376,
|
309 |
+
"accuracy_stderr": 0.018898933014207392,
|
310 |
+
"f1": 0.3438728561319695,
|
311 |
+
"f1_stderr": 0.015037693640197282,
|
312 |
+
"main_score": 0.36028917283120376
|
313 |
+
},
|
314 |
+
"th": {
|
315 |
+
"accuracy": 0.4338601210490921,
|
316 |
+
"accuracy_stderr": 0.01838326805184409,
|
317 |
+
"f1": 0.44123009965336957,
|
318 |
+
"f1_stderr": 0.014967999591595584,
|
319 |
+
"main_score": 0.4338601210490921
|
320 |
+
},
|
321 |
+
"tl": {
|
322 |
+
"accuracy": 0.2973436449226631,
|
323 |
+
"accuracy_stderr": 0.01833399973821919,
|
324 |
+
"f1": 0.28090429460991373,
|
325 |
+
"f1_stderr": 0.012358692677216883,
|
326 |
+
"main_score": 0.2973436449226631
|
327 |
+
},
|
328 |
+
"tr": {
|
329 |
+
"accuracy": 0.43930733019502355,
|
330 |
+
"accuracy_stderr": 0.02477039571658176,
|
331 |
+
"f1": 0.4265561991600836,
|
332 |
+
"f1_stderr": 0.022060686946343926,
|
333 |
+
"main_score": 0.43930733019502355
|
334 |
+
},
|
335 |
+
"ur": {
|
336 |
+
"accuracy": 0.26109616677874925,
|
337 |
+
"accuracy_stderr": 0.011974612577756474,
|
338 |
+
"f1": 0.27607059745773804,
|
339 |
+
"f1_stderr": 0.011634207629783868,
|
340 |
+
"main_score": 0.26109616677874925
|
341 |
+
},
|
342 |
+
"vi": {
|
343 |
+
"accuracy": 0.44327505043712173,
|
344 |
+
"accuracy_stderr": 0.022061037910983305,
|
345 |
+
"f1": 0.43953676685827936,
|
346 |
+
"f1_stderr": 0.01965182342188036,
|
347 |
+
"main_score": 0.44327505043712173
|
348 |
+
},
|
349 |
+
"zh-CN": {
|
350 |
+
"accuracy": 0.40618695359784807,
|
351 |
+
"accuracy_stderr": 0.01878416975952488,
|
352 |
+
"f1": 0.40304322644486057,
|
353 |
+
"f1_stderr": 0.016358332856736345,
|
354 |
+
"main_score": 0.40618695359784807
|
355 |
+
},
|
356 |
+
"zh-TW": {
|
357 |
+
"accuracy": 0.3292871553463349,
|
358 |
+
"accuracy_stderr": 0.012964553395663082,
|
359 |
+
"f1": 0.3310118176304551,
|
360 |
+
"f1_stderr": 0.00939726932836698,
|
361 |
+
"main_score": 0.3292871553463349
|
362 |
+
}
|
363 |
+
}
|
364 |
+
}
|
results/LASER2/MassiveScenarioClassification.json
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"af": {
|
6 |
+
"accuracy": 0.4710154673839947,
|
7 |
+
"accuracy_stderr": 0.018564271686437515,
|
8 |
+
"f1": 0.4451973179524046,
|
9 |
+
"f1_stderr": 0.016582236744477792,
|
10 |
+
"main_score": 0.4710154673839947
|
11 |
+
},
|
12 |
+
"am": {
|
13 |
+
"accuracy": 0.17696704774714192,
|
14 |
+
"accuracy_stderr": 0.03488947970284516,
|
15 |
+
"f1": 0.15821694371719605,
|
16 |
+
"f1_stderr": 0.018041297388910648,
|
17 |
+
"main_score": 0.17696704774714192
|
18 |
+
},
|
19 |
+
"ar": {
|
20 |
+
"accuracy": 0.4520847343644922,
|
21 |
+
"accuracy_stderr": 0.02052556073259087,
|
22 |
+
"f1": 0.4493556808838758,
|
23 |
+
"f1_stderr": 0.02219131959628148,
|
24 |
+
"main_score": 0.4520847343644922
|
25 |
+
},
|
26 |
+
"az": {
|
27 |
+
"accuracy": 0.2821116341627438,
|
28 |
+
"accuracy_stderr": 0.03302593905078847,
|
29 |
+
"f1": 0.25909697848350605,
|
30 |
+
"f1_stderr": 0.025892139767993743,
|
31 |
+
"main_score": 0.2821116341627438
|
32 |
+
},
|
33 |
+
"bn": {
|
34 |
+
"accuracy": 0.5052454606590451,
|
35 |
+
"accuracy_stderr": 0.025871484930688898,
|
36 |
+
"f1": 0.4856524051409231,
|
37 |
+
"f1_stderr": 0.02999372933773852,
|
38 |
+
"main_score": 0.5052454606590451
|
39 |
+
},
|
40 |
+
"cy": {
|
41 |
+
"accuracy": 0.2257565568258238,
|
42 |
+
"accuracy_stderr": 0.029955555426665198,
|
43 |
+
"f1": 0.22253995596411508,
|
44 |
+
"f1_stderr": 0.024577736879299292,
|
45 |
+
"main_score": 0.2257565568258238
|
46 |
+
},
|
47 |
+
"da": {
|
48 |
+
"accuracy": 0.5486550100874243,
|
49 |
+
"accuracy_stderr": 0.024402881290646793,
|
50 |
+
"f1": 0.5266171141921359,
|
51 |
+
"f1_stderr": 0.022103636920251905,
|
52 |
+
"main_score": 0.5486550100874243
|
53 |
+
},
|
54 |
+
"de": {
|
55 |
+
"accuracy": 0.543375924680565,
|
56 |
+
"accuracy_stderr": 0.021944881957252572,
|
57 |
+
"f1": 0.5252613318654367,
|
58 |
+
"f1_stderr": 0.026364483689257163,
|
59 |
+
"main_score": 0.543375924680565
|
60 |
+
},
|
61 |
+
"el": {
|
62 |
+
"accuracy": 0.5547074646940148,
|
63 |
+
"accuracy_stderr": 0.025938196719597618,
|
64 |
+
"f1": 0.5349766031105144,
|
65 |
+
"f1_stderr": 0.029002837280894762,
|
66 |
+
"main_score": 0.5547074646940148
|
67 |
+
},
|
68 |
+
"en": {
|
69 |
+
"accuracy": 0.5592131809011432,
|
70 |
+
"accuracy_stderr": 0.02460975514543639,
|
71 |
+
"f1": 0.5360164729184802,
|
72 |
+
"f1_stderr": 0.023764425252363358,
|
73 |
+
"main_score": 0.5592131809011432
|
74 |
+
},
|
75 |
+
"es": {
|
76 |
+
"accuracy": 0.5277404169468729,
|
77 |
+
"accuracy_stderr": 0.01930086885231061,
|
78 |
+
"f1": 0.5147488045351095,
|
79 |
+
"f1_stderr": 0.02102482512919075,
|
80 |
+
"main_score": 0.5277404169468729
|
81 |
+
},
|
82 |
+
"evaluation_time": 2170.8,
|
83 |
+
"fa": {
|
84 |
+
"accuracy": 0.5250168123739072,
|
85 |
+
"accuracy_stderr": 0.02656193333119369,
|
86 |
+
"f1": 0.5107120593131073,
|
87 |
+
"f1_stderr": 0.027581382894975626,
|
88 |
+
"main_score": 0.5250168123739072
|
89 |
+
},
|
90 |
+
"fi": {
|
91 |
+
"accuracy": 0.5263281775386685,
|
92 |
+
"accuracy_stderr": 0.028049993574005946,
|
93 |
+
"f1": 0.5028105658943992,
|
94 |
+
"f1_stderr": 0.029331037664081416,
|
95 |
+
"main_score": 0.5263281775386685
|
96 |
+
},
|
97 |
+
"fr": {
|
98 |
+
"accuracy": 0.5431741761936786,
|
99 |
+
"accuracy_stderr": 0.02330862085752492,
|
100 |
+
"f1": 0.5225553974023132,
|
101 |
+
"f1_stderr": 0.025371329635383216,
|
102 |
+
"main_score": 0.5431741761936786
|
103 |
+
},
|
104 |
+
"he": {
|
105 |
+
"accuracy": 0.5241425689307331,
|
106 |
+
"accuracy_stderr": 0.023080787167122134,
|
107 |
+
"f1": 0.5053900298960137,
|
108 |
+
"f1_stderr": 0.023963342674475203,
|
109 |
+
"main_score": 0.5241425689307331
|
110 |
+
},
|
111 |
+
"hi": {
|
112 |
+
"accuracy": 0.47370544720914587,
|
113 |
+
"accuracy_stderr": 0.02723430216840629,
|
114 |
+
"f1": 0.4497838830218261,
|
115 |
+
"f1_stderr": 0.029160940440385055,
|
116 |
+
"main_score": 0.47370544720914587
|
117 |
+
},
|
118 |
+
"hu": {
|
119 |
+
"accuracy": 0.5343308675184936,
|
120 |
+
"accuracy_stderr": 0.02571158946620075,
|
121 |
+
"f1": 0.5127958383061038,
|
122 |
+
"f1_stderr": 0.02800743447651377,
|
123 |
+
"main_score": 0.5343308675184936
|
124 |
+
},
|
125 |
+
"hy": {
|
126 |
+
"accuracy": 0.33574310692669806,
|
127 |
+
"accuracy_stderr": 0.0279984332671053,
|
128 |
+
"f1": 0.31782884203375084,
|
129 |
+
"f1_stderr": 0.024137129936083107,
|
130 |
+
"main_score": 0.33574310692669806
|
131 |
+
},
|
132 |
+
"id": {
|
133 |
+
"accuracy": 0.543813046402152,
|
134 |
+
"accuracy_stderr": 0.02173056397773423,
|
135 |
+
"f1": 0.5300232571973252,
|
136 |
+
"f1_stderr": 0.02368021779116069,
|
137 |
+
"main_score": 0.543813046402152
|
138 |
+
},
|
139 |
+
"is": {
|
140 |
+
"accuracy": 0.49778076664425014,
|
141 |
+
"accuracy_stderr": 0.02425237237474775,
|
142 |
+
"f1": 0.4706894365473266,
|
143 |
+
"f1_stderr": 0.026960565416528054,
|
144 |
+
"main_score": 0.49778076664425014
|
145 |
+
},
|
146 |
+
"it": {
|
147 |
+
"accuracy": 0.5483523873570949,
|
148 |
+
"accuracy_stderr": 0.0236096496608969,
|
149 |
+
"f1": 0.5335311466130319,
|
150 |
+
"f1_stderr": 0.02545386322306336,
|
151 |
+
"main_score": 0.5483523873570949
|
152 |
+
},
|
153 |
+
"ja": {
|
154 |
+
"accuracy": 0.541223940820444,
|
155 |
+
"accuracy_stderr": 0.02132943677295098,
|
156 |
+
"f1": 0.5297398634789287,
|
157 |
+
"f1_stderr": 0.02456627872645516,
|
158 |
+
"main_score": 0.541223940820444
|
159 |
+
},
|
160 |
+
"jv": {
|
161 |
+
"accuracy": 0.32713517148621385,
|
162 |
+
"accuracy_stderr": 0.035614449716496376,
|
163 |
+
"f1": 0.31631803435296824,
|
164 |
+
"f1_stderr": 0.02907835125753927,
|
165 |
+
"main_score": 0.32713517148621385
|
166 |
+
},
|
167 |
+
"ka": {
|
168 |
+
"accuracy": 0.2691997310020175,
|
169 |
+
"accuracy_stderr": 0.014025349472741056,
|
170 |
+
"f1": 0.2553767051487454,
|
171 |
+
"f1_stderr": 0.01162136511437043,
|
172 |
+
"main_score": 0.2691997310020175
|
173 |
+
},
|
174 |
+
"km": {
|
175 |
+
"accuracy": 0.2723268325487559,
|
176 |
+
"accuracy_stderr": 0.02335380952684497,
|
177 |
+
"f1": 0.2515485444512877,
|
178 |
+
"f1_stderr": 0.017257971891773076,
|
179 |
+
"main_score": 0.2723268325487559
|
180 |
+
},
|
181 |
+
"kn": {
|
182 |
+
"accuracy": 0.10063887020847344,
|
183 |
+
"accuracy_stderr": 0.024999293350221934,
|
184 |
+
"f1": 0.064525855332009,
|
185 |
+
"f1_stderr": 0.013368181011921797,
|
186 |
+
"main_score": 0.10063887020847344
|
187 |
+
},
|
188 |
+
"ko": {
|
189 |
+
"accuracy": 0.5200739744451917,
|
190 |
+
"accuracy_stderr": 0.028003601644626674,
|
191 |
+
"f1": 0.508622045242862,
|
192 |
+
"f1_stderr": 0.02866048570926957,
|
193 |
+
"main_score": 0.5200739744451917
|
194 |
+
},
|
195 |
+
"lv": {
|
196 |
+
"accuracy": 0.44821788836583726,
|
197 |
+
"accuracy_stderr": 0.03405873263075454,
|
198 |
+
"f1": 0.44404598642640175,
|
199 |
+
"f1_stderr": 0.034820002597344316,
|
200 |
+
"main_score": 0.44821788836583726
|
201 |
+
},
|
202 |
+
"ml": {
|
203 |
+
"accuracy": 0.49098856758574316,
|
204 |
+
"accuracy_stderr": 0.036953827315555375,
|
205 |
+
"f1": 0.477330044105713,
|
206 |
+
"f1_stderr": 0.04031567283455406,
|
207 |
+
"main_score": 0.49098856758574316
|
208 |
+
},
|
209 |
+
"mn": {
|
210 |
+
"accuracy": 0.2150975117686617,
|
211 |
+
"accuracy_stderr": 0.031789545064276226,
|
212 |
+
"f1": 0.19956650806636905,
|
213 |
+
"f1_stderr": 0.02753725989804031,
|
214 |
+
"main_score": 0.2150975117686617
|
215 |
+
},
|
216 |
+
"ms": {
|
217 |
+
"accuracy": 0.5360121049092131,
|
218 |
+
"accuracy_stderr": 0.024483088411342932,
|
219 |
+
"f1": 0.5186987112385978,
|
220 |
+
"f1_stderr": 0.02535803268828841,
|
221 |
+
"main_score": 0.5360121049092131
|
222 |
+
},
|
223 |
+
"my": {
|
224 |
+
"accuracy": 0.29717552118359114,
|
225 |
+
"accuracy_stderr": 0.028042233316740755,
|
226 |
+
"f1": 0.2811205919315657,
|
227 |
+
"f1_stderr": 0.027129866000958187,
|
228 |
+
"main_score": 0.29717552118359114
|
229 |
+
},
|
230 |
+
"nb": {
|
231 |
+
"accuracy": 0.439004707464694,
|
232 |
+
"accuracy_stderr": 0.027998816890400836,
|
233 |
+
"f1": 0.4292074186822793,
|
234 |
+
"f1_stderr": 0.026243622116762927,
|
235 |
+
"main_score": 0.439004707464694
|
236 |
+
},
|
237 |
+
"nl": {
|
238 |
+
"accuracy": 0.5333221250840617,
|
239 |
+
"accuracy_stderr": 0.025110033232975306,
|
240 |
+
"f1": 0.5077836780602125,
|
241 |
+
"f1_stderr": 0.027053518325785973,
|
242 |
+
"main_score": 0.5333221250840617
|
243 |
+
},
|
244 |
+
"pl": {
|
245 |
+
"accuracy": 0.5291526563550774,
|
246 |
+
"accuracy_stderr": 0.02756493168576702,
|
247 |
+
"f1": 0.5199897798231456,
|
248 |
+
"f1_stderr": 0.029788904479210038,
|
249 |
+
"main_score": 0.5291526563550774
|
250 |
+
},
|
251 |
+
"pt": {
|
252 |
+
"accuracy": 0.5341291190316073,
|
253 |
+
"accuracy_stderr": 0.0218184197703392,
|
254 |
+
"f1": 0.5199879514297052,
|
255 |
+
"f1_stderr": 0.02121614576868715,
|
256 |
+
"main_score": 0.5341291190316073
|
257 |
+
},
|
258 |
+
"ro": {
|
259 |
+
"accuracy": 0.5047747141896436,
|
260 |
+
"accuracy_stderr": 0.02555648952102798,
|
261 |
+
"f1": 0.4877286315335815,
|
262 |
+
"f1_stderr": 0.02639141604347184,
|
263 |
+
"main_score": 0.5047747141896436
|
264 |
+
},
|
265 |
+
"ru": {
|
266 |
+
"accuracy": 0.5184263618022864,
|
267 |
+
"accuracy_stderr": 0.030568502165383708,
|
268 |
+
"f1": 0.5141368540903201,
|
269 |
+
"f1_stderr": 0.033485640371287616,
|
270 |
+
"main_score": 0.5184263618022864
|
271 |
+
},
|
272 |
+
"sl": {
|
273 |
+
"accuracy": 0.5128782784129118,
|
274 |
+
"accuracy_stderr": 0.02677596327757706,
|
275 |
+
"f1": 0.5069111807663103,
|
276 |
+
"f1_stderr": 0.028984297990527246,
|
277 |
+
"main_score": 0.5128782784129118
|
278 |
+
},
|
279 |
+
"sq": {
|
280 |
+
"accuracy": 0.556523201075992,
|
281 |
+
"accuracy_stderr": 0.022907536560761797,
|
282 |
+
"f1": 0.5280391253265858,
|
283 |
+
"f1_stderr": 0.02766946734240689,
|
284 |
+
"main_score": 0.556523201075992
|
285 |
+
},
|
286 |
+
"sv": {
|
287 |
+
"accuracy": 0.5464357767316745,
|
288 |
+
"accuracy_stderr": 0.02703916904648807,
|
289 |
+
"f1": 0.5289646853571585,
|
290 |
+
"f1_stderr": 0.027215870565783958,
|
291 |
+
"main_score": 0.5464357767316745
|
292 |
+
},
|
293 |
+
"sw": {
|
294 |
+
"accuracy": 0.4204438466711499,
|
295 |
+
"accuracy_stderr": 0.02543427134780407,
|
296 |
+
"f1": 0.39698226248309787,
|
297 |
+
"f1_stderr": 0.02495774581205971,
|
298 |
+
"main_score": 0.4204438466711499
|
299 |
+
},
|
300 |
+
"ta": {
|
301 |
+
"accuracy": 0.3672158708809684,
|
302 |
+
"accuracy_stderr": 0.024620778778865062,
|
303 |
+
"f1": 0.35611628288260666,
|
304 |
+
"f1_stderr": 0.02508451846783393,
|
305 |
+
"main_score": 0.3672158708809684
|
306 |
+
},
|
307 |
+
"te": {
|
308 |
+
"accuracy": 0.4208137188971082,
|
309 |
+
"accuracy_stderr": 0.02723531925936748,
|
310 |
+
"f1": 0.39746768684058836,
|
311 |
+
"f1_stderr": 0.029476453506871073,
|
312 |
+
"main_score": 0.4208137188971082
|
313 |
+
},
|
314 |
+
"th": {
|
315 |
+
"accuracy": 0.521486213853396,
|
316 |
+
"accuracy_stderr": 0.02513073701134646,
|
317 |
+
"f1": 0.5038882871449852,
|
318 |
+
"f1_stderr": 0.025901347057158762,
|
319 |
+
"main_score": 0.521486213853396
|
320 |
+
},
|
321 |
+
"tl": {
|
322 |
+
"accuracy": 0.3734028244788164,
|
323 |
+
"accuracy_stderr": 0.036431060397290715,
|
324 |
+
"f1": 0.3428567103143635,
|
325 |
+
"f1_stderr": 0.03562323164275494,
|
326 |
+
"main_score": 0.3734028244788164
|
327 |
+
},
|
328 |
+
"tr": {
|
329 |
+
"accuracy": 0.5255548083389374,
|
330 |
+
"accuracy_stderr": 0.030376754244448495,
|
331 |
+
"f1": 0.5139704021609626,
|
332 |
+
"f1_stderr": 0.02797264681517368,
|
333 |
+
"main_score": 0.5255548083389374
|
334 |
+
},
|
335 |
+
"ur": {
|
336 |
+
"accuracy": 0.32599193006052457,
|
337 |
+
"accuracy_stderr": 0.03133503581066815,
|
338 |
+
"f1": 0.32576383434482714,
|
339 |
+
"f1_stderr": 0.02553427963140292,
|
340 |
+
"main_score": 0.32599193006052457
|
341 |
+
},
|
342 |
+
"vi": {
|
343 |
+
"accuracy": 0.5097175521183592,
|
344 |
+
"accuracy_stderr": 0.01667763764284436,
|
345 |
+
"f1": 0.49826499437648436,
|
346 |
+
"f1_stderr": 0.019814421278178205,
|
347 |
+
"main_score": 0.5097175521183592
|
348 |
+
},
|
349 |
+
"zh-CN": {
|
350 |
+
"accuracy": 0.5021856086079354,
|
351 |
+
"accuracy_stderr": 0.01872946746711234,
|
352 |
+
"f1": 0.49069359630568155,
|
353 |
+
"f1_stderr": 0.022400099688479058,
|
354 |
+
"main_score": 0.5021856086079354
|
355 |
+
},
|
356 |
+
"zh-TW": {
|
357 |
+
"accuracy": 0.4232347007397445,
|
358 |
+
"accuracy_stderr": 0.01456541641125866,
|
359 |
+
"f1": 0.41073538173900237,
|
360 |
+
"f1_stderr": 0.015525857226939374,
|
361 |
+
"main_score": 0.4232347007397445
|
362 |
+
}
|
363 |
+
}
|
364 |
+
}
|
results/LASER2/MedrxivClusteringP2P.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 549.14,
|
4 |
+
"v_measure": 0.17908142247465778,
|
5 |
+
"v_measure_std": 0.01580960913642727
|
6 |
+
},
|
7 |
+
"dataset_version": null,
|
8 |
+
"mteb_version": "0.0.2"
|
9 |
+
}
|
results/LASER2/MedrxivClusteringS2S.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 73.93,
|
4 |
+
"v_measure": 0.1662952889451872,
|
5 |
+
"v_measure_std": 0.018792494328507908
|
6 |
+
},
|
7 |
+
"dataset_version": null,
|
8 |
+
"mteb_version": "0.0.2"
|
9 |
+
}
|
results/LASER2/MindSmallReranking.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 103.4,
|
6 |
+
"map": 0.24788913161151171,
|
7 |
+
"mrr": 0.25454137908041313
|
8 |
+
}
|
9 |
+
}
|
results/LASER2/NFCorpus.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 44.54,
|
4 |
+
"map_at_1": 0.00051,
|
5 |
+
"map_at_10": 0.00303,
|
6 |
+
"map_at_100": 0.00588,
|
7 |
+
"map_at_1000": 0.01164,
|
8 |
+
"map_at_3": 0.00166,
|
9 |
+
"map_at_5": 0.00244,
|
10 |
+
"ndcg_at_1": 0.01548,
|
11 |
+
"ndcg_at_10": 0.02439,
|
12 |
+
"ndcg_at_100": 0.03883,
|
13 |
+
"ndcg_at_1000": 0.13695,
|
14 |
+
"ndcg_at_3": 0.0188,
|
15 |
+
"ndcg_at_5": 0.02153,
|
16 |
+
"precision_at_1": 0.01858,
|
17 |
+
"precision_at_10": 0.02508,
|
18 |
+
"precision_at_100": 0.01851,
|
19 |
+
"precision_at_1000": 0.01354,
|
20 |
+
"precision_at_3": 0.02167,
|
21 |
+
"precision_at_5": 0.02415,
|
22 |
+
"recall_at_1": 0.00051,
|
23 |
+
"recall_at_10": 0.01005,
|
24 |
+
"recall_at_100": 0.06311,
|
25 |
+
"recall_at_1000": 0.40172,
|
26 |
+
"recall_at_3": 0.00342,
|
27 |
+
"recall_at_5": 0.00638
|
28 |
+
},
|
29 |
+
"dataset_version": null,
|
30 |
+
"mteb_version": "0.0.2"
|
31 |
+
}
|
results/LASER2/NQ.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 6367.75,
|
4 |
+
"map_at_1": 0.00261,
|
5 |
+
"map_at_10": 0.00499,
|
6 |
+
"map_at_100": 0.00563,
|
7 |
+
"map_at_1000": 0.0058,
|
8 |
+
"map_at_3": 0.0044,
|
9 |
+
"map_at_5": 0.00473,
|
10 |
+
"ndcg_at_1": 0.00319,
|
11 |
+
"ndcg_at_10": 0.00642,
|
12 |
+
"ndcg_at_100": 0.01013,
|
13 |
+
"ndcg_at_1000": 0.01617,
|
14 |
+
"ndcg_at_3": 0.00514,
|
15 |
+
"ndcg_at_5": 0.00576,
|
16 |
+
"precision_at_1": 0.00319,
|
17 |
+
"precision_at_10": 0.00116,
|
18 |
+
"precision_at_100": 0.00033,
|
19 |
+
"precision_at_1000": 9e-05,
|
20 |
+
"precision_at_3": 0.00251,
|
21 |
+
"precision_at_5": 0.00185,
|
22 |
+
"recall_at_1": 0.00261,
|
23 |
+
"recall_at_10": 0.01004,
|
24 |
+
"recall_at_100": 0.02728,
|
25 |
+
"recall_at_1000": 0.07648,
|
26 |
+
"recall_at_3": 0.00661,
|
27 |
+
"recall_at_5": 0.00806
|
28 |
+
},
|
29 |
+
"dataset_version": null,
|
30 |
+
"mteb_version": "0.0.2"
|
31 |
+
}
|
results/LASER2/QuoraRetrieval.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 393.84,
|
4 |
+
"map_at_1": 0.54965,
|
5 |
+
"map_at_10": 0.66201,
|
6 |
+
"map_at_100": 0.6704,
|
7 |
+
"map_at_1000": 0.6709,
|
8 |
+
"map_at_3": 0.63478,
|
9 |
+
"map_at_5": 0.65101,
|
10 |
+
"ndcg_at_1": 0.6354,
|
11 |
+
"ndcg_at_10": 0.71145,
|
12 |
+
"ndcg_at_100": 0.74023,
|
13 |
+
"ndcg_at_1000": 0.7486,
|
14 |
+
"ndcg_at_3": 0.67488,
|
15 |
+
"ndcg_at_5": 0.69306,
|
16 |
+
"precision_at_1": 0.6354,
|
17 |
+
"precision_at_10": 0.10798,
|
18 |
+
"precision_at_100": 0.01348,
|
19 |
+
"precision_at_1000": 0.00149,
|
20 |
+
"precision_at_3": 0.29257,
|
21 |
+
"precision_at_5": 0.19412,
|
22 |
+
"recall_at_1": 0.54965,
|
23 |
+
"recall_at_10": 0.80505,
|
24 |
+
"recall_at_100": 0.92322,
|
25 |
+
"recall_at_1000": 0.97766,
|
26 |
+
"recall_at_3": 0.69938,
|
27 |
+
"recall_at_5": 0.7496
|
28 |
+
},
|
29 |
+
"dataset_version": null,
|
30 |
+
"mteb_version": "0.0.2"
|
31 |
+
}
|
results/LASER2/RedditClustering.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 251.71,
|
4 |
+
"v_measure": 0.0996202584007419,
|
5 |
+
"v_measure_std": 0.013494785830352516
|
6 |
+
},
|
7 |
+
"dataset_version": null,
|
8 |
+
"mteb_version": "0.0.2"
|
9 |
+
}
|
results/LASER2/RedditClusteringP2P.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_version": null,
|
3 |
+
"mteb_version": "0.0.2",
|
4 |
+
"test": {
|
5 |
+
"evaluation_time": 1784.6,
|
6 |
+
"v_measure": 0.264185580282609,
|
7 |
+
"v_measure_std": 0.08501487346178989
|
8 |
+
}
|
9 |
+
}
|
results/LASER2/SCIDOCS.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"evaluation_time": 164.89,
|
4 |
+
"map_at_1": 0.003,
|
5 |
+
"map_at_10": 0.00387,
|
6 |
+
"map_at_100": 0.00459,
|
7 |
+
"map_at_1000": 0.00532,
|
8 |
+
"map_at_3": 0.00333,
|
9 |
+
"map_at_5": 0.00356,
|
10 |
+
"ndcg_at_1": 0.015,
|
11 |
+
"ndcg_at_10": 0.00777,
|
12 |
+
"ndcg_at_100": 0.01565,
|
13 |
+
"ndcg_at_1000": 0.04821,
|
14 |
+
"ndcg_at_3": 0.00787,
|
15 |
+
"ndcg_at_5": 0.00647,
|
16 |
+
"precision_at_1": 0.015,
|
17 |
+
"precision_at_10": 0.0035,
|
18 |
+
"precision_at_100": 0.00162,
|
19 |
+
"precision_at_1000": 0.00098,
|
20 |
+
"precision_at_3": 0.006,
|
21 |
+
"precision_at_5": 0.0046,
|
22 |
+
"recall_at_1": 0.003,
|
23 |
+
"recall_at_10": 0.00718,
|
24 |
+
"recall_at_100": 0.03288,
|
25 |
+
"recall_at_1000": 0.19957,
|
26 |
+
"recall_at_3": 0.00373,
|
27 |
+
"recall_at_5": 0.00473
|
28 |
+
},
|
29 |
+
"dataset_version": null,
|
30 |
+
"mteb_version": "0.0.2"
|
31 |
+
}
|
results/LASER2/SICK-R.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"cos_sim": {
|
4 |
+
"pearson": 0.6710717395109536,
|
5 |
+
"spearman": 0.6285761430269268
|
6 |
+
},
|
7 |
+
"euclidean": {
|
8 |
+
"pearson": 0.5991815699401573,
|
9 |
+
"spearman": 0.5964342697857706
|
10 |
+
},
|
11 |
+
"evaluation_time": 14.19,
|
12 |
+
"manhattan": {
|
13 |
+
"pearson": 0.5607429216703508,
|
14 |
+
"spearman": 0.5531149921833667
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"dataset_version": null,
|
18 |
+
"mteb_version": "0.0.2"
|
19 |
+
}
|
results/LASER2/STS12.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"test": {
|
3 |
+
"cos_sim": {
|
4 |
+
"pearson": 0.5997074409143551,
|
5 |
+
"spearman": 0.6260375600516247
|
6 |
+
},
|
7 |
+
"euclidean": {
|
8 |
+
"pearson": 0.49354765627824515,
|
9 |
+
"spearman": 0.5909106889528086
|
10 |
+
},
|
11 |
+
"evaluation_time": 11.98,
|
12 |
+
"manhattan": {
|
13 |
+
"pearson": 0.4558810047629682,
|
14 |
+
"spearman": 0.5570403794622609
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"dataset_version": null,
|
18 |
+
"mteb_version": "0.0.2"
|
19 |
+
}
|