Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Muennighoff
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from functools import partial
|
2 |
import json
|
|
|
3 |
|
4 |
from datasets import load_dataset
|
5 |
import gradio as gr
|
@@ -805,7 +806,12 @@ MODELS_TO_SKIP = {
|
|
805 |
"Severian/nomic", # Copy
|
806 |
}
|
807 |
|
808 |
-
|
|
|
|
|
|
|
|
|
|
|
809 |
|
810 |
def add_lang(examples):
|
811 |
if not(examples["eval_language"]):
|
@@ -837,20 +843,25 @@ def add_task(examples):
|
|
837 |
examples["mteb_task"] = "Unknown"
|
838 |
return examples
|
839 |
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
|
|
|
|
|
|
|
|
|
|
854 |
|
855 |
def get_dim_seq_size(model):
|
856 |
filenames = [sib.rfilename for sib in model.siblings]
|
|
|
1 |
from functools import partial
|
2 |
import json
|
3 |
+
import os
|
4 |
|
5 |
from datasets import load_dataset
|
6 |
import gradio as gr
|
|
|
806 |
"Severian/nomic", # Copy
|
807 |
}
|
808 |
|
809 |
+
|
810 |
+
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"):
|
811 |
+
with open("EXTERNAL_MODEL_RESULTS.json") as f:
|
812 |
+
EXTERNAL_MODEL_RESULTS = json.load(f)
|
813 |
+
else:
|
814 |
+
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
|
815 |
|
816 |
def add_lang(examples):
|
817 |
if not(examples["eval_language"]):
|
|
|
843 |
examples["mteb_task"] = "Unknown"
|
844 |
return examples
|
845 |
|
846 |
+
if not(os.path.exists("EXTERNAL_MODEL_RESULTS.json")):
|
847 |
+
pbar = tqdm(EXTERNAL_MODELS, desc="Fetching external model results")
|
848 |
+
for model in pbar:
|
849 |
+
pbar.set_description(f"Fetching external model results for {model!r}")
|
850 |
+
ds = load_dataset("mteb/results", model, trust_remote_code=True)
|
851 |
+
# For local debugging:
|
852 |
+
#, download_mode='force_redownload', verification_mode="no_checks")
|
853 |
+
ds = ds.map(add_lang)
|
854 |
+
ds = ds.map(add_task)
|
855 |
+
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))}
|
856 |
+
# For now only one metric per task - Could add more metrics lateron
|
857 |
+
for task, metric in TASK_TO_METRIC.items():
|
858 |
+
ds_dict = ds.filter(lambda x: (x["mteb_task"] == task) and (x["metric"] == metric))["test"].to_dict()
|
859 |
+
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
|
860 |
+
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
|
861 |
+
|
862 |
+
# Save & cache EXTERNAL_MODEL_RESULTS
|
863 |
+
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
|
864 |
+
json.dump(EXTERNAL_MODEL_RESULTS, f)
|
865 |
|
866 |
def get_dim_seq_size(model):
|
867 |
filenames = [sib.rfilename for sib in model.siblings]
|