Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from functools import reduce | |
import json | |
import pickle | |
import os | |
import re | |
import gradio as gr | |
import pandas as pd | |
from tqdm.autonotebook import tqdm | |
from utils.model_size import get_model_parameters_memory | |
from refresh import TASK_TO_METRIC, TASKS, PRETTY_NAMES, TASKS_CONFIG, BOARDS_CONFIG, load_results | |
from envs import REPO_ID | |
from refresh import PROPRIETARY_MODELS, SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS, CROSS_ENCODERS, BI_ENCODERS, TASK_DESCRIPTIONS, EXTERNAL_MODEL_TO_LINK, make_clickable_model | |
PROPRIETARY_MODELS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in PROPRIETARY_MODELS | |
} | |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS | |
} | |
CROSS_ENCODERS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in CROSS_ENCODERS | |
} | |
BI_ENCODERS = { | |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}")) | |
for model in BI_ENCODERS | |
} | |
def make_datasets_clickable(df): | |
"""Does not work""" | |
if "BornholmBitextMining" in df.columns: | |
link = "https://huggingface.co/datasets/strombergnlp/bornholmsk_parallel" | |
df = df.rename( | |
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',}) | |
return df | |
# 1. Force headers to wrap | |
# 2. Force model column (maximum) width | |
# 3. Prevent model column from overflowing, scroll instead | |
# 4. Prevent checkbox groups from taking up too much space | |
css = """ | |
table > thead { | |
white-space: normal | |
} | |
table { | |
--cell-width-1: 250px | |
} | |
table > tbody > tr > td:nth-child(2) > div { | |
overflow-x: auto | |
} | |
.filter-checkbox-group { | |
max-width: max-content; | |
} | |
""" | |
""" | |
Each inner tab can have the following keys: | |
- language: The language of the leaderboard | |
- language_long: [optional] The long form of the language | |
- description: The description of the leaderboard | |
- credits: [optional] The credits for the leaderboard | |
- data: The data for the leaderboard | |
""" | |
# No more refreshing manually, happens daily | |
# def get_refresh_function(task_category, task_list): | |
# def _refresh(): | |
# data_task_category = get_mteb_data(tasks=[task_category], datasets=task_list) | |
# data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True) | |
# return data_task_category | |
# return _refresh | |
# def get_refresh_overall_function(tasks): | |
# return lambda: get_mteb_average(tasks)[0] | |
# load in the pre-calculated `all_data_tasks` and `boards_data` | |
print(f"Loading pre-calculated data....") | |
all_data_tasks = load_results("all_data_tasks") | |
boards_data = load_results("boards_data") | |
#### Caclulate Metadata | |
# Exact, add all non-nan integer values for every dataset | |
NUM_SCORES = 0 | |
DATASETS = [] | |
MODELS = [] | |
# LANGUAGES = [] | |
for d in all_data_tasks: | |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum() | |
cols_to_ignore = 4 if "Average" in d.columns else 3 | |
# Count number of scores including only non-nan floats & excluding the rank column | |
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum() | |
# Exclude rank & model name column (first two); Do not count different language versions as different datasets | |
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]] | |
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]] | |
MODELS += d["Model"].tolist() | |
NUM_DATASETS = len(set(DATASETS)) | |
# NUM_LANGUAGES = len(set(LANGUAGES)) | |
NUM_MODELS = len(set(MODELS)) | |
data = { | |
"Overall": {"metric": "Various, refer to task tabs", "data": []} | |
} | |
for task in TASKS: | |
data[task] = {"metric": TASKS_CONFIG[task]["metric_description"], "data": []} | |
for board, board_config in BOARDS_CONFIG.items(): | |
init_name = board_config["title"] | |
if init_name in PRETTY_NAMES: | |
init_name = PRETTY_NAMES[init_name] | |
board_pretty_name = f"{init_name} leaderboard" | |
acronym = board_config.get("acronym", None) | |
board_icon = board_config.get("icon", None) | |
if board_icon is None: | |
board_icon = "" | |
credits = board_config.get("credits", None) | |
metric = board_config.get("metric", None) | |
if board_config["has_overall"]: | |
overall_pretty_name = board_pretty_name | |
if acronym is not None: | |
overall_pretty_name += f" ({board_config['acronym']})" | |
data["Overall"]["data"].append({ | |
"language": board_config["title"], | |
"language_long": board_config["language_long"], | |
"description": f"**Overall MTEB {overall_pretty_name}** 🔮{board_icon}", | |
"data": boards_data[board]["data_overall"], | |
# "refresh": get_refresh_overall_function(board_config["tasks"]), | |
"credits": credits, | |
"metric": metric, | |
}) | |
for task_category, task_category_list in board_config["tasks"].items(): | |
task_icon = TASKS_CONFIG[task_category]['icon'] | |
if "special_icons" in board_config and isinstance(board_config["special_icons"], dict): | |
task_icon = board_config["special_icons"].get(task_category, task_icon) | |
data[task_category]["data"].append({ | |
"language": board_config["title"], | |
"language_long": board_config["language_long"], | |
"description": f"**{task_category} {board_pretty_name}** {task_icon}{board_icon}", | |
"data": boards_data[board]["data_tasks"][task_category], | |
# "refresh": get_refresh_function(task_category, task_category_list), | |
"credits": credits, | |
"metric": metric, | |
}) | |
dataframes = [] | |
full_dataframes = [] | |
tabs = [] | |
# The following JavaScript function updates the URL parameters based on the selected task and language | |
# Additionally, `update_url_task` and `update_url_language` are used to update the current task and language | |
# The current task and language are stored in the `current_task_language` and `language_per_task` JSON objects | |
# This is all a bit hacky, but it might be the only way to pass options to a JavaScript function via Gradio | |
set_window_url_params = """ | |
function(goalUrlObject) { | |
const params = new URLSearchParams(window.location.search); | |
for (const [key, value] of Object.entries(goalUrlObject)) { | |
params.set(key, value); | |
}; | |
const queryString = '?' + params.toString(); | |
console.log(queryString); | |
window.history.replaceState({}, '', queryString); | |
return []; | |
} | |
""" | |
def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict): | |
current_task_language["task"] = event.target.id | |
# Either use the cached language for this task or the 1st language | |
try: | |
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[1].children[0].id) | |
except Exception as e: # is Overall tab, no description | |
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[0].children[0].id) | |
return current_task_language, language_per_task | |
def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict): | |
current_task_language["language"] = event.target.id | |
if "task" not in current_task_language: | |
current_task_language["task"] = "overall" | |
language_per_task[current_task_language["task"]] = event.target.id | |
return current_task_language, language_per_task | |
NUMERIC_INTERVALS = { | |
"<100M": pd.Interval(0, 100, closed="right"), | |
"100M to 250M": pd.Interval(100, 250, closed="right"), | |
"250M to 500M": pd.Interval(250, 500, closed="right"), | |
"500M to 1B": pd.Interval(500, 1000, closed="right"), | |
">1B": pd.Interval(1000, 1_000_000, closed="right"), | |
} | |
MODEL_TYPES = [ | |
"Open", | |
"Proprietary", | |
"Sentence Transformers", | |
"Cross-Encoders", | |
"Bi-Encoders" | |
] | |
def filter_data(search_query, model_types, model_sizes, *full_dataframes): | |
output_dataframes = [] | |
for df in full_dataframes: | |
# Apply the search query | |
if search_query: | |
names = df["Model"].map(lambda x: re.match("<a .+?>(.+)</a>", x).group(1)) | |
masks = [] | |
for query in search_query.split(";"): | |
masks.append(names.str.lower().str.contains(query.lower())) | |
df = df[reduce(lambda a, b: a | b, masks)] | |
# Apply the model type filtering | |
if set(model_types) != set(MODEL_TYPES): | |
masks = [] | |
for model_type in model_types: | |
if model_type == "Open": | |
masks.append(~df["Model"].isin(PROPRIETARY_MODELS)) | |
elif model_type == "Proprietary": | |
masks.append(df["Model"].isin(PROPRIETARY_MODELS)) | |
elif model_type == "Sentence Transformers": | |
masks.append(df["Model"].isin(SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS)) | |
elif model_type == "Cross-Encoders": | |
masks.append(df["Model"].isin(CROSS_ENCODERS)) | |
elif model_type == "Bi-Encoders": | |
masks.append(df["Model"].isin(BI_ENCODERS)) | |
if masks: | |
df = df[reduce(lambda a, b: a | b, masks)] | |
else: | |
df = pd.DataFrame(columns=df.columns) | |
# Apply the model size filtering | |
if set(model_sizes) != set(NUMERIC_INTERVALS.keys()): | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes])) | |
sizes = df["Model Size (Million Parameters)"].replace('', 0) | |
mask = sizes.apply(lambda size: any(numeric_interval.contains(size))) | |
df = df[mask] | |
output_dataframes.append(df) | |
return output_dataframes | |
with gr.Blocks(css=css) as block: | |
# Store the current task and language for updating the URL. This is a bit hacky, but it works | |
# for passing the current task and language to the JavaScript function via Gradio | |
current_task_language = gr.JSON(value=dict(), visible=False) | |
language_per_task = gr.JSON(value=dict(), visible=False) | |
gr.Markdown(f""" | |
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb/blob/main/docs/adding_a_model.md" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗 Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models. | |
""") | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
label="Search Bar (separate multiple queries with `;`)", | |
placeholder=" 🔍 Search for a model and press enter...", | |
) | |
filter_model_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=MODEL_TYPES, | |
value=MODEL_TYPES, | |
interactive=True, | |
elem_classes=["filter-checkbox-group"] | |
) | |
filter_model_sizes = gr.CheckboxGroup( | |
label="Model sizes (in number of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_classes=["filter-checkbox-group"], | |
scale=2, | |
) | |
with gr.Tabs() as outer_tabs: | |
# Store the tabs for updating them on load based on URL parameters | |
tabs.append(outer_tabs) | |
for task, task_values in data.items(): | |
metric = task_values["metric"] | |
task_tab_id = task.lower().replace(" ", "-") | |
# Overall, Bitext Mining, Classification, etc. | |
pretty_task_name = task if task not in PRETTY_NAMES.keys() else PRETTY_NAMES[task] | |
with gr.Tab(pretty_task_name, id=task_tab_id) as task_tab: | |
# For updating the 'task' in the URL | |
task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params) | |
if "Overall" != task: | |
gr.Markdown(TASK_DESCRIPTIONS[task]) | |
with gr.Tabs() as task_tabs: | |
# Store the task tabs for updating them on load based on URL parameters | |
tabs.append(task_tabs) | |
for item in task_values["data"]: | |
item_tab_id = item["language"].lower().replace(" ", "-") | |
# English, Chinese, French, etc. | |
with gr.Tab(item["language"], id=item_tab_id) as item_tab: | |
# For updating the 'language' in the URL | |
item_tab.select(update_url_language, [current_task_language, language_per_task], [current_task_language, language_per_task], trigger_mode="always_last").then(None, [current_task_language], [], js=set_window_url_params) | |
specific_metric = metric | |
if item.get("metric", None) is not None: | |
specific_metric = item['metric'] | |
with gr.Row(): | |
gr.Markdown(f""" | |
{item['description']} | |
- **Metric:** {specific_metric} | |
- **Languages:** {item['language_long'] if 'language_long' in item else item['language']} | |
{"- **Credits:** " + item['credits'] if ("credits" in item and item["credits"] is not None) else ''} | |
""") | |
with gr.Row(): | |
datatype = ["number", "markdown"] + ["number"] * len(item["data"]) | |
dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", height=500) | |
dataframes.append(dataframe) | |
full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False) | |
full_dataframes.append(full_dataframe) | |
# with gr.Row(): | |
# refresh_button = gr.Button("Refresh") | |
# refresh_button.click(item["refresh"], inputs=None, outputs=dataframe, concurrency_limit=20) | |
gr.Markdown(f""" | |
- **Total Datasets**: {NUM_DATASETS} | |
- **Total Languages**: 113 | |
- **Total Scores**: {NUM_SCORES} | |
- **Total Models**: {NUM_MODELS} | |
""" + r""" | |
Made with ❤️ for NLP. If this work is useful to you, please consider citing: | |
```bibtex | |
@article{muennighoff2022mteb, | |
doi = {10.48550/ARXIV.2210.07316}, | |
url = {https://arxiv.org/abs/2210.07316}, | |
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, | |
title = {MTEB: Massive Text Embedding Benchmark}, | |
publisher = {arXiv}, | |
journal={arXiv preprint arXiv:2210.07316}, | |
year = {2022} | |
} | |
``` | |
""") | |
def set_tabs_on_load(request: gr.Request): | |
"""Set the selected tab based on the URL parameters on load.""" | |
global tabs | |
valid_task_keys = [child.id for child in tabs[0].children] | |
return_tabs = [gr.Tabs()] * len(tabs) | |
query_params = request.request.query_params | |
task_key = query_params.get("task", "overall") | |
if task_key not in valid_task_keys: | |
task_key = "overall" | |
return_tabs[0] = gr.Tabs(selected=task_key) | |
tabs_idx = valid_task_keys.index(task_key) + 1 | |
language_key = query_params.get("language", "english") | |
return_tabs[tabs_idx] = gr.Tabs(selected=language_key) | |
current_task_language = {"task": task_key, "language": language_key} | |
language_per_task = {task_key: language_key} | |
return return_tabs + [current_task_language, language_per_task] | |
block.load(set_tabs_on_load, inputs=[], outputs=tabs + [current_task_language, language_per_task]) | |
search_bar.submit(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) | |
filter_model_type.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) | |
filter_model_sizes.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes) | |
block.queue(max_size=10) | |
block.launch() | |
# Possible changes: | |
# Could add graphs / other visual content | |
# Could add verification marks | |
# Sources: | |
# https://huggingface.co/spaces/gradio/leaderboard | |
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard | |
# https://getemoji.com/ | |