Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
model_name = "mstftmk/shakespeare-gpt2" # Replace with your model's repo | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Define the generation function | |
def generate_text(input_text, max_length, temperature): | |
inputs = tokenizer.encode(input_text, return_tensors="pt") | |
outputs = model.generate(inputs, max_length=max_length, temperature=temperature) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Enter your prompt..."), | |
gr.Slider(50, 300, value=100, label="Max Length"), | |
gr.Slider(0.1, 1.0, value=0.7, label="Temperature"), | |
], | |
outputs=gr.Textbox(), | |
title="Shakespeare GPT-2", | |
description="Generate text inspired by Shakespeare.", | |
) | |
# Launch the Gradio app | |
interface.launch() | |