Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from model import create_effnetb2_model
|
7 |
+
from timeit import default_timer as timer
|
8 |
+
from typing import Tuple, Dict
|
9 |
+
|
10 |
+
# Setup class names
|
11 |
+
with open("class_names.txt", "r") as f:
|
12 |
+
class_names = [food_name.strip() for food_name in f.readlines()]
|
13 |
+
|
14 |
+
### 2. Model and transforms preparation ###
|
15 |
+
# Create model and transforms
|
16 |
+
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101)
|
17 |
+
|
18 |
+
# Load saved weights
|
19 |
+
effnetb2.load_state_dict(
|
20 |
+
torch.load(f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth",
|
21 |
+
map_location=torch.device("cpu")) # load to CPU
|
22 |
+
)
|
23 |
+
|
24 |
+
### 3. Predict function ###
|
25 |
+
|
26 |
+
def predict(img) -> Tuple[Dict, float]:
|
27 |
+
# Start a timer
|
28 |
+
start_time = timer()
|
29 |
+
|
30 |
+
# Transform the input image for use with EffNetB2
|
31 |
+
img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index
|
32 |
+
|
33 |
+
# Put model into eval mode, make prediction
|
34 |
+
effnetb2.eval()
|
35 |
+
with torch.inference_mode():
|
36 |
+
# Pass transformed image through the model and turn the prediction logits into probaiblities
|
37 |
+
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
38 |
+
|
39 |
+
# Create a prediction label and prediction probability dictionary
|
40 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
41 |
+
|
42 |
+
# Calculate pred time
|
43 |
+
end_time = timer()
|
44 |
+
pred_time = round(end_time - start_time, 4)
|
45 |
+
|
46 |
+
# Return pred dict and pred time
|
47 |
+
return pred_labels_and_probs, pred_time
|
48 |
+
|
49 |
+
### 4. Gradio app ###
|
50 |
+
|
51 |
+
# Create title, description and article
|
52 |
+
title = "FoodVision BIG 🍔👁💪"
|
53 |
+
description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images [101 classes of food from the Food101 dataset](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
|
54 |
+
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#11-turning-our-foodvision-big-model-into-a-deployable-app)."
|
55 |
+
|
56 |
+
# Create example list
|
57 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
58 |
+
|
59 |
+
# Create the Gradio demo
|
60 |
+
demo = gr.Interface(fn=predict, # maps inputs to outputs
|
61 |
+
inputs=gr.Image(type="pil"),
|
62 |
+
outputs=[gr.Label(num_top_classes=5, label="Predictions"),
|
63 |
+
gr.Number(label="Prediction time (s)")],
|
64 |
+
examples=example_list,
|
65 |
+
title=title,
|
66 |
+
description=description,
|
67 |
+
article=article)
|
68 |
+
|
69 |
+
# Launch the demo!
|
70 |
+
demo.launch()
|