import os import shutil import argparse import requests from tqdm import tqdm from huggingface_hub import HfApi, Repository, hf_hub_download, upload_folder from merge import merge_folder, map_tensors_to_files, copy_nontensor_files, save_tensor_map class RepositoryManager: def __init__(self, repo_id=None, token=None, dry_run=False): self.repo_id = repo_id self.token = token self.dry_run = dry_run self.api = HfApi(token=token) if token else HfApi() def download_repo(self, repo_name, path): if self.dry_run: print(f"[DRY RUN] Downloading {repo_name} to {path}") return if not os.path.exists(path): os.makedirs(path) repo_files = self.api.list_repo_files(repo_name) for file_path in tqdm(repo_files, desc=f"Downloading {repo_name}"): file_url = f"https://huggingface.co/{repo_name}/resolve/main/{file_path}" hf_hub_download(repo_id=repo_name, filename=file_path, cache_dir=path, local_dir=path) def delete_repo(self, path): if self.dry_run: print(f"[DRY RUN] Deleting {path}") else: shutil.rmtree(path, ignore_errors=True) print(f"Deleted {path}") class ModelMerger: def __init__(self, staging_path, repo_id=None, token=None, dry_run=False): self.staging_path = staging_path self.repo_id = repo_id self.token = token self.dry_run = dry_run self.tensor_map = None self.api = HfApi(token=token) if token else HfApi() def prepare_base_model(self, base_model_name, base_model_path): repo_manager = RepositoryManager(self.repo_id, self.token, self.dry_run) repo_manager.download_repo(base_model_name, base_model_path) self.tensor_map = map_tensors_to_files(base_model_path) def merge_repo(self, repo_name, repo_path, p, lambda_val): repo_manager = RepositoryManager(self.repo_id, self.token, self.dry_run) repo_manager.delete_repo(repo_path) repo_manager.download_repo(repo_name, repo_path) if self.dry_run: print(f"[DRY RUN] Merging {repo_name} with p={p} and lambda={lambda_val}") return try: self.tensor_map = merge_folder(self.tensor_map, repo_path, p, lambda_val) print(f"Merged {repo_name}") except Exception as e: print(f"Error merging {repo_name}: {e}") def finalize_merge(self, output_dir): copy_nontensor_files(self.staging_path / 'base_model', output_dir) save_tensor_map(self.tensor_map, output_dir) def upload_model(self, output_dir, repo_name, commit_message): if self.dry_run: print(f"[DRY RUN] Uploading model to {repo_name}") return repo = Repository(repo_id=self.repo_id, token=self.token) repo.create_branch("main", "main") # Ensure main branch exists repo.upload_folder(output_dir, repo_path=repo_name, commit_message=commit_message) print(f"Model uploaded to {repo_name}") def get_max_vocab_size(repo_list): max_vocab_size = 0 repo_with_max_vocab = None base_url = "https://huggingface.co/{}/raw/main/config.json" for repo_name, _, _ in repo_list: url = base_url.format(repo_name) try: response = requests.get(url) config = response.json() vocab_size = config.get('vocab_size', 0) if vocab_size > max_vocab_size: max_vocab_size = vocab_size repo_with_max_vocab = repo_name except requests.RequestException as e: print(f"Error fetching vocab size from {repo_name}: {e}") return max_vocab_size, repo_with_max_vocab def download_json_files(repo_name, file_paths, output_dir): base_url = f"https://huggingface.co/{repo_name}/raw/main/" for file_path in file_paths: url = base_url + file_path response = requests.get(url) if response.status_code == 200: with open(os.path.join(output_dir, os.path.basename(file_path)), 'wb') as file: file.write(response.content) else: print(f"Failed to download {file_path} from {repo_name}") def main(): parser = argparse.ArgumentParser(description="Merge and upload HuggingFace models") parser.add_argument('repos', nargs='+', help='Repositories to merge') parser.add_argument('output_dir', help='Output directory') parser.add_argument('-staging', default='./staging', help='Staging folder') parser.add_argument('-p', type=float, default=0.5, help='Dropout probability') parser.add_argument('-lambda', type=float, default=1.0, help='Scaling factor') parser.add_argument('--dry', action='store_true', help='Dry run mode') parser.add_argument('--token', type=str, help='HuggingFace token') parser.add_argument('--repo', type=str, help='HuggingFace repo to upload to') parser.add_argument('--commit-message', type=str, default='Upload merged model', help='Commit message for model upload') args = parser.parse_args() staging_path = os.path.abspath(args.staging) os.makedirs(staging_path, exist_ok=True) base_model_name, base_model_path = "base_model", os.path.join(staging_path, "base_model") staging_model_path = os.path.join(staging_path, "staging_model") model_merger = ModelMerger(staging_path, args.repo, args.token, args.dry) model_merger.prepare_base_model(base_model_name, base_model_path) for repo_name in tqdm(args.repos[1:], desc="Merging Repos"): model_merger.merge_repo(repo_name, staging_model_path, args.p, args.lambda) model_merger.finalize_merge(args.output_dir) max_vocab_size, _ = get_max_vocab_size(args.repos) # Unused variable removed if args.repo: model_merger.upload_model(args.output_dir, args.repo, args.commit_message) if __name__ == "__main__": main()