File size: 6,726 Bytes
6b7b2db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c7ccf7
6b7b2db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import numpy as np
import os
import shutil
import torch
import torch.nn.functional as F
from safetensors.torch import safe_open, save_file

def merge_tensors(tensor1, tensor2, p):
    # Calculate the delta of the weights
    delta = tensor2 - tensor1
    # Generate the mask m^t from Bernoulli distribution
    m = torch.from_numpy(np.random.binomial(1, p, delta.shape)).to(tensor1.dtype)
    # Apply the mask to the delta to get δ̃^t
    delta_tilde = m * delta
    # Scale the masked delta by the dropout rate to get δ̂^t
    delta_hat = delta_tilde / (1 - p)
    return delta_hat

def merge_safetensors(file_path1, file_path2, p, lambda_val):
    merged_tensors = {}

    with safe_open(file_path1, framework="pt", device="cpu") as f1, safe_open(file_path2, framework="pt", device="cpu") as f2:
        keys1 = set(f1.keys())
        keys2 = set(f2.keys())
        common_keys = keys1.intersection(keys2)

        for key in common_keys:
            tensor1 = f1.get_tensor(key)
            tensor2 = f2.get_tensor(key)
            tensor1, tensor2 = resize_tensors(tensor1, tensor2)
            merged_tensors[key] = tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)
            print("merging", key)

    return merged_tensors

class BinDataHandler():
    def __init__(self, data):
        self.data = data

    def get_tensor(self, key):
        return self.data[key]

def read_tensors(file_path, ext):
    if ext == ".safetensors" and file_path.endswith(".safetensors"):
        f = safe_open(file_path, framework="pt", device="cpu")
        return f, set(f.keys())
    if ext == ".bin" and file_path.endswith(".bin"):
        data = torch.load(file_path, map_location=torch.device('cpu'))
        f = BinDataHandler(data)
        return f, set(data.keys())
    return None, None

def resize_tensors(tensor1, tensor2):
    if len(tensor1.shape) not in [1, 2]:
        return tensor1, tensor2

    # Pad along the last dimension (width)
    if tensor1.shape[-1] < tensor2.shape[-1]:
        padding_size = tensor2.shape[-1] - tensor1.shape[-1]
        tensor1 = F.pad(tensor1, (0, padding_size, 0, 0))
    elif tensor2.shape[-1] < tensor1.shape[-1]:
        padding_size = tensor1.shape[-1] - tensor2.shape[-1]
        tensor2 = F.pad(tensor2, (0, padding_size, 0, 0))

    # Pad along the first dimension (height)
    if tensor1.shape[0] < tensor2.shape[0]:
        padding_size = tensor2.shape[0] - tensor1.shape[0]
        tensor1 = F.pad(tensor1, (0, 0, 0, padding_size))
    elif tensor2.shape[0] < tensor1.shape[0]:
        padding_size = tensor1.shape[0] - tensor2.shape[0]
        tensor2 = F.pad(tensor2, (0, 0, 0, padding_size))

    return tensor1, tensor2

def merge_folder(tensor_map, directory_path, p, lambda_val):
    keys1 = set(tensor_map.keys())
    # Some repos have both bin and safetensors, choose safetensors if so
    ext = None
    for filename in os.listdir(directory_path):
        # Default to safetensors
        if filename.endswith(".safetensors"):
            ext = ".safetensors"
        if filename.endswith(".bin") and ext is None:
            ext = ".bin"
    if ext is None:
        raise "Could not find model files"

    for filename in os.listdir(directory_path):
        file_path = os.path.join(directory_path, filename)
        f, keys2 = read_tensors(file_path, ext)
        if keys2:
            common_keys = keys1.intersection(keys2)
            for key in common_keys:
                if "block_sparse_moe.gate" in key:
                    tensor1 = tensor_map[key]['tensor']
                    tensor2 = f.get_tensor(key)
                    tensor_map[key]['tensor'] = (tensor1 + tensor2) /2.0
                    continue
                tensor1 = tensor_map[key]['tensor']
                tensor2 = f.get_tensor(key)
                tensor1, tensor2 = resize_tensors(tensor1, tensor2)
                tensor_map[key]['tensor'] = tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)
    return tensor_map

def map_tensors_to_files(directory_path):
    tensor_map = {}

    for filename in os.listdir(directory_path):
        file_path = os.path.join(directory_path, filename)
        f, keys = read_tensors(file_path, '.safetensors')
        if keys:
            for key in keys:
                tensor = f.get_tensor(key)
                tensor_map[key] = {'filename':filename, 'shape':tensor.shape, 'tensor': tensor}

    return tensor_map

def copy_nontensor_files(from_path, to_path):
    for filename in os.listdir(from_path):
        file_path = os.path.join(from_path, filename)
        if from_path != to_path and not filename.startswith(".") and not filename.startswith("README") and not filename.endswith(".bin") and not filename.endswith(".safetensors") and not filename.endswith(".pt") and not os.path.isdir(file_path):
            print(f"Copying {file_path} to {to_path}")
            shutil.copyfile(file_path, to_path+'/'+filename)

def save_tensor_map(tensor_map, output_folder):
    metadata = {'format': 'pt'}
    by_filename = {}

    for key, value in tensor_map.items():
        filename = value["filename"]
        tensor = value["tensor"]
        if filename not in by_filename:
            by_filename[filename] = {}
        by_filename[filename][key] = tensor

    for filename in sorted(by_filename.keys()):
        output_file = output_folder+'/'+filename
        print("Saving:", output_file)
        save_file(by_filename[filename], output_file, metadata=metadata)

def main():
    # Parse command-line arguments
    parser = argparse.ArgumentParser(description='Merge two safetensor model files.')
    parser.add_argument('base_model', type=str, help='The base model safetensor file')
    parser.add_argument('second_model', type=str, help='The second model safetensor file')
    parser.add_argument('output_model', type=str, help='The output merged model safetensor file')
    parser.add_argument('-p', type=float, default=0.5, help='Dropout probability')
    parser.add_argument('-lambda', dest='lambda_val', type=float, default=1.0, help='Scaling factor for the weight delta')
    args = parser.parse_args()

    if os.path.isdir(args.base_model):
        if not os.path.exists(args.output_model):
            os.makedirs(args.output_model)

        tensor_map = map_tensors_to_files(args.base_model)
        tensor_map = merge_folder(tensor_map, args.second_model, args.p, args.lambda_val)
        copy_nontensor_files(args.base_model, args.output_model)
        save_tensor_map(tensor_map, args.output_model)
    else:
        merged = merge_safetensors(args.base_model, args.second_model, args.p, args.lambda_val)
        save_file(merged, args.output_model)

if __name__ == '__main__':
    main()