Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def gradio_app():
|
2 |
with gr.Blocks() as demo:
|
3 |
gr.Markdown("""
|
4 |
## 📈 Advanced Stock Analysis Dashboard
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
""")
|
8 |
|
9 |
ticker_options = [
|
@@ -152,7 +491,19 @@ def gradio_app():
|
|
152 |
ticker3 = gr.Dropdown(label="Third Ticker", choices=ticker_options, value="GOOGL: Alphabet Inc.")
|
153 |
ticker4 = gr.Dropdown(label="Fourth Ticker", choices=ticker_options, value="AMZN: Amazon.com, Inc.")
|
154 |
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
analyze_button.click(
|
158 |
fn=gradio_interface,
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import yfinance as yf
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import mplfinance as mpf
|
6 |
+
from PIL import Image, ImageDraw, ImageFont
|
7 |
+
import gradio as gr
|
8 |
+
import datetime
|
9 |
+
import logging
|
10 |
+
from transformers import AutoProcessor, AutoModelForPreTraining
|
11 |
+
import tempfile
|
12 |
+
import os
|
13 |
+
import spaces
|
14 |
+
import pandas as pd
|
15 |
+
import numpy as np
|
16 |
+
from scipy import stats
|
17 |
+
import seaborn as sns
|
18 |
+
|
19 |
+
# Configure logging
|
20 |
+
logging.basicConfig(filename='debug.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
21 |
+
|
22 |
+
# Load the chart_analysis model and processor
|
23 |
+
processor = AutoProcessor.from_pretrained("mobenta/chart_analysis")
|
24 |
+
model = AutoModelForPreTraining.from_pretrained("mobenta/chart_analysis")
|
25 |
+
|
26 |
+
@spaces.GPU
|
27 |
+
def predict(image, input_text):
|
28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
model.to(device)
|
30 |
+
|
31 |
+
image = image.convert("RGB")
|
32 |
+
inputs = processor(text=input_text, images=image, return_tensors="pt")
|
33 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
34 |
+
|
35 |
+
prompt_length = inputs['input_ids'].shape[1]
|
36 |
+
generate_ids = model.generate(**inputs, max_new_tokens=512)
|
37 |
+
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
38 |
+
|
39 |
+
return output_text
|
40 |
+
|
41 |
+
def fetch_stock_data(ticker='TSLA', start='2010-01-01', end=None, interval='1d'):
|
42 |
+
if end is None:
|
43 |
+
end = datetime.date.today().isoformat()
|
44 |
+
try:
|
45 |
+
logging.debug(f"Fetching data for {ticker} from {start} to {end} with interval {interval}")
|
46 |
+
stock = yf.Ticker(ticker)
|
47 |
+
data = stock.history(start=start, end=end, interval=interval)
|
48 |
+
if data.empty:
|
49 |
+
logging.warning(f"No data fetched for {ticker} in the range {start} to {end}")
|
50 |
+
return pd.DataFrame()
|
51 |
+
logging.debug(f"Fetched data with {len(data)} rows")
|
52 |
+
return data
|
53 |
+
except Exception as e:
|
54 |
+
logging.error(f"Error fetching data: {e}")
|
55 |
+
return pd.DataFrame()
|
56 |
+
|
57 |
+
def create_stock_chart(data, ticker, filename='chart.png', timeframe='1d', indicators=None):
|
58 |
+
try:
|
59 |
+
logging.debug(f"Creating chart for {ticker} with timeframe {timeframe} and saving to {filename}")
|
60 |
+
title = f"{ticker.upper()} Price Data (Timeframe: {timeframe})"
|
61 |
+
|
62 |
+
plt.rcParams["axes.titlesize"] = 10
|
63 |
+
my_style = mpf.make_mpf_style(base_mpf_style='charles')
|
64 |
+
|
65 |
+
# Calculate indicators if selected
|
66 |
+
addplot = []
|
67 |
+
if indicators:
|
68 |
+
if 'RSI' in indicators:
|
69 |
+
delta = data['Close'].diff(1)
|
70 |
+
gain = delta.where(delta > 0, 0)
|
71 |
+
loss = -delta.where(delta < 0, 0)
|
72 |
+
avg_gain = gain.rolling(window=14).mean()
|
73 |
+
avg_loss = loss.rolling(window=14).mean()
|
74 |
+
rs = avg_gain / avg_loss
|
75 |
+
rsi = 100 - (100 / (1 + rs))
|
76 |
+
addplot.append(mpf.make_addplot(rsi, panel=2, color='orange', ylabel='RSI'))
|
77 |
+
if 'SMA21' in indicators:
|
78 |
+
logging.debug("Calculating SMA 21")
|
79 |
+
sma_21 = data['Close'].rolling(window=21).mean()
|
80 |
+
addplot.append(mpf.make_addplot(sma_21, color='purple', linestyle='dashed'))
|
81 |
+
if 'SMA50' in indicators:
|
82 |
+
logging.debug("Calculating SMA 50")
|
83 |
+
sma_50 = data['Close'].rolling(window=50).mean()
|
84 |
+
addplot.append(mpf.make_addplot(sma_50, color='orange', linestyle='dashed'))
|
85 |
+
if 'SMA200' in indicators:
|
86 |
+
logging.debug("Calculating SMA 200")
|
87 |
+
sma_200 = data['Close'].rolling(window=200).mean()
|
88 |
+
addplot.append(mpf.make_addplot(sma_200, color='brown', linestyle='dashed'))
|
89 |
+
if 'VWAP' in indicators:
|
90 |
+
logging.debug("Calculating VWAP")
|
91 |
+
vwap = (data['Volume'] * (data['High'] + data['Low'] + data['Close']) / 3).cumsum() / data['Volume'].cumsum()
|
92 |
+
addplot.append(mpf.make_addplot(vwap, color='blue', linestyle='dashed'))
|
93 |
+
if 'Bollinger Bands' in indicators:
|
94 |
+
logging.debug("Calculating Bollinger Bands")
|
95 |
+
sma = data['Close'].rolling(window=20).mean()
|
96 |
+
std = data['Close'].rolling(window=20).std()
|
97 |
+
upper_band = sma + (std * 2)
|
98 |
+
lower_band = sma - (std * 2)
|
99 |
+
addplot.append(mpf.make_addplot(upper_band, color='green', linestyle='dashed'))
|
100 |
+
addplot.append(mpf.make_addplot(lower_band, color='green', linestyle='dashed'))
|
101 |
+
|
102 |
+
fig, axlist = mpf.plot(data, type='candle', style=my_style, volume=True, addplot=addplot, returnfig=True)
|
103 |
+
fig.suptitle(title, y=0.98)
|
104 |
+
|
105 |
+
# Save chart image
|
106 |
+
fig.savefig(filename, dpi=300)
|
107 |
+
plt.close(fig)
|
108 |
+
|
109 |
+
# Open and add financial data to the image
|
110 |
+
image = Image.open(filename)
|
111 |
+
draw = ImageDraw.Draw(image)
|
112 |
+
font = ImageFont.load_default() # Use default font, you can also use custom fonts if available
|
113 |
+
|
114 |
+
# Financial metrics to add
|
115 |
+
metrics = {
|
116 |
+
"Ticker": ticker,
|
117 |
+
"Latest Close": f"${data['Close'].iloc[-1]:,.2f}",
|
118 |
+
"Volume": f"{data['Volume'].iloc[-1]:,.0f}"
|
119 |
+
}
|
120 |
+
|
121 |
+
# Add additional metrics if indicators are present
|
122 |
+
if 'SMA21' in indicators:
|
123 |
+
metrics["SMA 21"] = f"${data['Close'].rolling(window=21).mean().iloc[-1]:,.2f}"
|
124 |
+
if 'SMA50' in indicators:
|
125 |
+
metrics["SMA 50"] = f"${data['Close'].rolling(window=50).mean().iloc[-1]:,.2f}"
|
126 |
+
if 'SMA200' in indicators:
|
127 |
+
metrics["SMA 200"] = f"${data['Close'].rolling(window=200).mean().iloc[-1]:,.2f}"
|
128 |
+
|
129 |
+
# Draw metrics on the image
|
130 |
+
y_text = image.height - 50 # Starting y position for text
|
131 |
+
for key, value in metrics.items():
|
132 |
+
text = f"{key}: {value}"
|
133 |
+
draw.text((10, y_text), text, font=font, fill=(255, 255, 255)) # White color text
|
134 |
+
y_text += 20
|
135 |
+
|
136 |
+
# Resize image
|
137 |
+
new_size = (image.width * 3, image.height * 3)
|
138 |
+
resized_image = image.resize(new_size, Image.LANCZOS)
|
139 |
+
resized_image.save(filename)
|
140 |
+
|
141 |
+
logging.debug(f"Resized image with timeframe {timeframe} and ticker {ticker} saved to {filename}")
|
142 |
+
except Exception as e:
|
143 |
+
logging.error(f"Error creating or resizing chart: {e}")
|
144 |
+
raise
|
145 |
+
|
146 |
+
def combine_images(image_paths, output_path='combined_chart.png'):
|
147 |
+
try:
|
148 |
+
logging.debug(f"Combining images {image_paths} into {output_path}")
|
149 |
+
images = [Image.open(path) for path in image_paths]
|
150 |
+
|
151 |
+
# Calculate total width and max height for combined image
|
152 |
+
total_width = sum(img.width for img in images)
|
153 |
+
max_height = max(img.height for img in images)
|
154 |
+
|
155 |
+
combined_image = Image.new('RGB', (total_width, max_height))
|
156 |
+
x_offset = 0
|
157 |
+
for img in images:
|
158 |
+
combined_image.paste(img, (x_offset, 0))
|
159 |
+
x_offset += img.width
|
160 |
+
|
161 |
+
combined_image.save(output_path)
|
162 |
+
logging.debug(f"Combined image saved to {output_path}")
|
163 |
+
return output_path
|
164 |
+
except Exception as e:
|
165 |
+
logging.error(f"Error combining images: {e}")
|
166 |
+
raise
|
167 |
+
|
168 |
+
def perform_trend_analysis(data):
|
169 |
+
# Perform trend analysis
|
170 |
+
close_prices = data['Close']
|
171 |
+
time_index = np.arange(len(close_prices))
|
172 |
+
slope, intercept, r_value, p_value, std_err = stats.linregress(time_index, close_prices)
|
173 |
+
|
174 |
+
trend_line = slope * time_index + intercept
|
175 |
+
|
176 |
+
plt.figure(figsize=(12, 6))
|
177 |
+
plt.plot(close_prices.index, close_prices, label='Close Price')
|
178 |
+
plt.plot(close_prices.index, trend_line, color='red', label='Trend Line')
|
179 |
+
plt.title('Trend Analysis')
|
180 |
+
plt.xlabel('Date')
|
181 |
+
plt.ylabel('Price')
|
182 |
+
plt.legend()
|
183 |
+
|
184 |
+
trend_filename = 'trend_analysis.png'
|
185 |
+
plt.savefig(trend_filename)
|
186 |
+
plt.close()
|
187 |
+
|
188 |
+
trend_strength = abs(r_value)
|
189 |
+
trend_direction = "upward" if slope > 0 else "downward"
|
190 |
+
|
191 |
+
analysis_text = f"Trend Analysis:\n"
|
192 |
+
analysis_text += f"The stock shows a {trend_direction} trend.\n"
|
193 |
+
analysis_text += f"Trend strength (R-squared): {trend_strength:.2f}\n"
|
194 |
+
analysis_text += f"Slope: {slope:.4f}\n"
|
195 |
+
|
196 |
+
return analysis_text, trend_filename
|
197 |
+
|
198 |
+
def perform_correlation_analysis(data_dict):
|
199 |
+
# Perform correlation analysis
|
200 |
+
combined_data = pd.DataFrame({ticker: data['Close'] for ticker, data in data_dict.items()})
|
201 |
+
correlation_matrix = combined_data.corr()
|
202 |
+
|
203 |
+
plt.figure(figsize=(10, 8))
|
204 |
+
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1, center=0)
|
205 |
+
plt.title('Correlation Analysis')
|
206 |
+
|
207 |
+
corr_filename = 'correlation_analysis.png'
|
208 |
+
plt.savefig(corr_filename)
|
209 |
+
plt.close()
|
210 |
+
|
211 |
+
analysis_text = f"Correlation Analysis:\n"
|
212 |
+
for i in range(len(correlation_matrix.columns)):
|
213 |
+
for j in range(i+1, len(correlation_matrix.columns)):
|
214 |
+
ticker1 = correlation_matrix.columns[i]
|
215 |
+
ticker2 = correlation_matrix.columns[j]
|
216 |
+
corr = correlation_matrix.iloc[i, j]
|
217 |
+
analysis_text += f"Correlation between {ticker1} and {ticker2}: {corr:.2f}\n"
|
218 |
+
|
219 |
+
return analysis_text, corr_filename
|
220 |
+
|
221 |
+
def comprehensive_investment_strategy():
|
222 |
+
strategy = """
|
223 |
+
Comprehensive Investment Strategy Analysis:
|
224 |
+
|
225 |
+
1. Fundamental Analysis:
|
226 |
+
- Assess financial health using key metrics like P/E ratio, EPS growth, debt-to-equity ratio, and free cash flow.
|
227 |
+
- Analyze quarterly and annual earnings reports, focusing on revenue growth, profit margins, and management guidance.
|
228 |
+
- Consider industry trends such as technological disruption, regulatory changes, and shifting consumer preferences.
|
229 |
+
|
230 |
+
2. Technical Analysis:
|
231 |
+
- Utilize chart patterns like head and shoulders, double tops/bottoms, and cup and handle.
|
232 |
+
- Employ technical indicators including Moving Averages, RSI, MACD, and Bollinger Bands.
|
233 |
+
- Incorporate volume analysis to confirm trend strength and potential reversals.
|
234 |
+
|
235 |
+
3. Macroeconomic Analysis:
|
236 |
+
- Monitor key economic indicators: GDP growth, inflation rates, unemployment figures, and consumer sentiment indices.
|
237 |
+
- Track central bank policies, particularly interest rate decisions and quantitative easing programs.
|
238 |
+
- Evaluate geopolitical events' impact through news analysis and global market correlations.
|
239 |
+
|
240 |
+
4. Risk Management:
|
241 |
+
- Implement diversification across sectors, geographies, and asset classes.
|
242 |
+
- Use position sizing based on account size and individual stock volatility.
|
243 |
+
- Set stop-loss orders at key technical levels, typically 5-15% below purchase price depending on stock volatility.
|
244 |
+
|
245 |
+
5. Sentiment Analysis:
|
246 |
+
- Gauge market sentiment through tools like the VIX, put/call ratio, and investor surveys.
|
247 |
+
- Monitor social media trends and financial news sentiment using natural language processing tools.
|
248 |
+
- Apply contrarian strategies when extreme bullish or bearish sentiment is detected, supported by fundamental and technical analysis.
|
249 |
+
|
250 |
+
6. Options Trading:
|
251 |
+
- Employ covered calls for income generation on long-term holds.
|
252 |
+
- Use protective puts to hedge downside risk on larger positions.
|
253 |
+
- Implement iron condors or credit spreads to take advantage of high implied volatility environments.
|
254 |
+
|
255 |
+
7. Long-Term Investing:
|
256 |
+
- Identify companies with strong competitive advantages, consistent revenue growth, and solid balance sheets.
|
257 |
+
- Focus on businesses with high return on invested capital (ROIC) and effective management teams.
|
258 |
+
- Include dividend aristocrats and growth stocks at a reasonable price (GARP) for a balanced approach.
|
259 |
+
|
260 |
+
8. Market Psychology:
|
261 |
+
- Apply principles of behavioral finance, recognizing common biases like herd mentality and recency bias.
|
262 |
+
- Maintain a trading journal to track decisions and emotions, promoting self-awareness and improvement.
|
263 |
+
- Develop and stick to a rules-based system to minimize emotional decision-making.
|
264 |
+
|
265 |
+
This comprehensive strategy aims to balance various analytical approaches, providing a robust framework for investment decisions across different market conditions.
|
266 |
+
"""
|
267 |
+
return strategy
|
268 |
+
|
269 |
+
def gradio_interface(ticker1, ticker2, ticker3, ticker4, start_date, end_date, query, analysis_type, interval, indicators):
|
270 |
+
try:
|
271 |
+
logging.debug(f"Starting gradio_interface with tickers: {ticker1}, {ticker2}, {ticker3}, {ticker4}, start_date: {start_date}, end_date: {end_date}, query: {query}, analysis_type: {analysis_type}, interval: {interval}")
|
272 |
+
|
273 |
+
if analysis_type == 'Comprehensive Investment Strategy':
|
274 |
+
return comprehensive_investment_strategy(), None
|
275 |
+
|
276 |
+
tickers = [ticker.split(':')[0].strip() for ticker in [ticker1, ticker2, ticker3, ticker4] if ticker]
|
277 |
+
chart_paths = []
|
278 |
+
data_dict = {}
|
279 |
+
|
280 |
+
for i, ticker in enumerate(tickers):
|
281 |
+
if ticker:
|
282 |
+
data = fetch_stock_data(ticker, start=start_date, end=end_date, interval=interval)
|
283 |
+
if data.empty:
|
284 |
+
return f"No data available for {ticker} in the specified date range.", None
|
285 |
+
data_dict[ticker] = data
|
286 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_chart:
|
287 |
+
chart_path = temp_chart.name
|
288 |
+
create_stock_chart(data, ticker, chart_path, timeframe=interval, indicators=indicators)
|
289 |
+
chart_paths.append(chart_path)
|
290 |
+
|
291 |
+
if analysis_type == 'Comparative Analysis' and len(chart_paths) > 1:
|
292 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_combined_chart:
|
293 |
+
combined_chart_path = temp_combined_chart.name
|
294 |
+
combine_images(chart_paths, combined_chart_path)
|
295 |
+
insights = predict(Image.open(combined_chart_path), query)
|
296 |
+
return insights, combined_chart_path
|
297 |
+
elif analysis_type == 'Trend Analysis':
|
298 |
+
if len(data_dict) > 0:
|
299 |
+
first_ticker = list(data_dict.keys())[0]
|
300 |
+
analysis_text, trend_chart = perform_trend_analysis(data_dict[first_ticker])
|
301 |
+
return analysis_text, trend_chart
|
302 |
+
else:
|
303 |
+
return "No data available for trend analysis.", None
|
304 |
+
elif analysis_type == 'Correlation Analysis':
|
305 |
+
if len(data_dict) > 1:
|
306 |
+
analysis_text, corr_chart = perform_correlation_analysis(data_dict)
|
307 |
+
return analysis_text, corr_chart
|
308 |
+
else:
|
309 |
+
return "At least two tickers are required for correlation analysis.", None
|
310 |
+
else:
|
311 |
+
|
312 |
+
# Single ticker analysis
|
313 |
+
if chart_paths:
|
314 |
+
insights = predict(Image.open(chart_paths[0]), query)
|
315 |
+
return insights, chart_paths[0]
|
316 |
+
else:
|
317 |
+
return "No tickers provided.", None
|
318 |
+
except Exception as e:
|
319 |
+
logging.error(f"Error in Gradio interface: {e}")
|
320 |
+
return f"Error processing image or query: {e}", None
|
321 |
+
|
322 |
def gradio_app():
|
323 |
with gr.Blocks() as demo:
|
324 |
gr.Markdown("""
|
325 |
## 📈 Advanced Stock Analysis Dashboard
|
326 |
+
|
327 |
+
This application provides a comprehensive stock analysis tool that allows users to input up to four stock tickers, specify date ranges, and select various financial indicators. The core functionalities include:
|
328 |
+
|
329 |
+
1. **Data Fetching and Chart Creation**: Historical stock data is fetched from Yahoo Finance, and candlestick charts are generated with optional financial indicators like RSI, SMA, VWAP, and Bollinger Bands.
|
330 |
+
|
331 |
+
2. **Text Analysis and Insights Generation**: The application uses a pre-trained model based on the Paligema architecture to analyze the input chart and text query, generating insightful analysis based on the provided financial data and context.
|
332 |
+
|
333 |
+
3. **Trend Analysis**: Performs trend analysis on a single stock, showing the trend line and providing information about the trend strength and direction.
|
334 |
+
|
335 |
+
4. **Correlation Analysis**: Analyzes the correlation between multiple stocks, providing a correlation matrix and heatmap.
|
336 |
+
|
337 |
+
5. **Comprehensive Investment Strategy**: Provides a detailed investment strategy based on fundamental analysis, technical analysis, macroeconomic factors, risk management, and more.
|
338 |
+
|
339 |
+
6. **User Interface**: Users can interactively select stocks, date ranges, intervals, and indicators. The app supports single ticker analysis, comparative analysis, trend analysis, correlation analysis, and comprehensive investment strategy.
|
340 |
+
|
341 |
+
7. **Logging and Debugging**: Detailed logging helps in debugging and tracking the application's processes.
|
342 |
+
|
343 |
+
8. **Enhanced Image Processing**: The app adds financial metrics and annotations to the generated charts, ensuring clear presentation of data.
|
344 |
+
|
345 |
+
This tool leverages various analysis techniques to provide detailed insights into stock market trends, offering an interactive and educational experience for users.
|
346 |
""")
|
347 |
|
348 |
ticker_options = [
|
|
|
491 |
ticker3 = gr.Dropdown(label="Third Ticker", choices=ticker_options, value="GOOGL: Alphabet Inc.")
|
492 |
ticker4 = gr.Dropdown(label="Fourth Ticker", choices=ticker_options, value="AMZN: Amazon.com, Inc.")
|
493 |
|
494 |
+
with gr.Row():
|
495 |
+
start_date = gr.Textbox(label="Start Date", value="2022-01-01")
|
496 |
+
end_date = gr.Textbox(label="End Date", value=datetime.date.today().isoformat())
|
497 |
+
interval = gr.Dropdown(label="Interval", choices=['1m', '2m', '5m', '15m', '30m', '60m', '90m', '1h', '1d', '5d', '1wk', '1mo', '3mo'], value='1d')
|
498 |
+
|
499 |
+
with gr.Row():
|
500 |
+
indicators = gr.CheckboxGroup(label="Indicators", choices=['RSI', 'SMA21', 'SMA50', 'SMA200', 'VWAP', 'Bollinger Bands'], value=['SMA21', 'SMA50'])
|
501 |
+
analysis_type = gr.Radio(label="Analysis Type", choices=['Single Ticker', 'Comparative Analysis', 'Trend Analysis', 'Correlation Analysis', 'Comprehensive Investment Strategy'], value='Single Ticker')
|
502 |
+
|
503 |
+
query = gr.Textbox(label="Analysis Query", value="Analyze the price trends.")
|
504 |
+
analyze_button = gr.Button("Analyze")
|
505 |
+
output_image = gr.Image(label="Analysis Chart")
|
506 |
+
output_text = gr.Textbox(label="Generated Insights", lines=10)
|
507 |
|
508 |
analyze_button.click(
|
509 |
fn=gradio_interface,
|