Spaces:
Running
on
Zero
Running
on
Zero
Fall back to use CPU
Browse files
npc_bert_models/cls_module.py
CHANGED
@@ -48,14 +48,8 @@ class NpcBertCLS():
|
|
48 |
|
49 |
self.model = AutoModelForSequenceClassification.from_pretrained(self.pretrained_model)
|
50 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
51 |
-
|
52 |
-
|
53 |
-
self.pipeline.model.to('cuda')
|
54 |
-
except Exception as e:
|
55 |
-
self.pipeline = hf_pipeline("text-classification", model=self.model, tokenizer=self.tokenizer, device='cpu')
|
56 |
-
self.logger.warning("No GPU!")
|
57 |
-
self.logger.exception(e)
|
58 |
-
|
59 |
@spaces.GPU
|
60 |
def __call__(self, *args: Any) -> Any:
|
61 |
"""Performs classification on the given reports.
|
@@ -82,6 +76,8 @@ class NpcBertCLS():
|
|
82 |
if len(args[0]) < 10:
|
83 |
return "Not enough text for classification!"
|
84 |
|
|
|
|
|
85 |
pipe_out = self.pipeline(*args)
|
86 |
pipe_out = {o['label']: o['score'] for o in pipe_out}
|
87 |
return pipe_out
|
|
|
48 |
|
49 |
self.model = AutoModelForSequenceClassification.from_pretrained(self.pretrained_model)
|
50 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
51 |
+
self.pipeline = hf_pipeline("text-classification", model=self.model, tokenizer=self.tokenizer, device_map='auto')
|
52 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
@spaces.GPU
|
54 |
def __call__(self, *args: Any) -> Any:
|
55 |
"""Performs classification on the given reports.
|
|
|
76 |
if len(args[0]) < 10:
|
77 |
return "Not enough text for classification!"
|
78 |
|
79 |
+
self.logger.info(f"{self.pipeline.model.device = }")
|
80 |
+
|
81 |
pipe_out = self.pipeline(*args)
|
82 |
pipe_out = {o['label']: o['score'] for o in pipe_out}
|
83 |
return pipe_out
|
npc_bert_models/mlm_module.py
CHANGED
@@ -47,13 +47,7 @@ class NpcBertMLM():
|
|
47 |
|
48 |
self.model = AutoModelForMaskedLM.from_pretrained(self.pretrained_model)
|
49 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
50 |
-
|
51 |
-
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device='cuda')
|
52 |
-
self.pipeline.model.to('cuda')
|
53 |
-
except Exception as e:
|
54 |
-
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device='cpu')
|
55 |
-
self.logger.warning("No GPU")
|
56 |
-
self.logger.exception(e)
|
57 |
|
58 |
@spaces.GPU
|
59 |
def __call__(self, *args):
|
@@ -77,6 +71,7 @@ class NpcBertMLM():
|
|
77 |
msg = "Model was not initialized, have you run load()?"
|
78 |
raise BrokenPipeError(msg)
|
79 |
|
|
|
80 |
pipe_out = self.pipeline(*args)
|
81 |
# Just use the first output
|
82 |
if not isinstance(pipe_out[0], dict):
|
|
|
47 |
|
48 |
self.model = AutoModelForMaskedLM.from_pretrained(self.pretrained_model)
|
49 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
50 |
+
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device_map='auto')
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
@spaces.GPU
|
53 |
def __call__(self, *args):
|
|
|
71 |
msg = "Model was not initialized, have you run load()?"
|
72 |
raise BrokenPipeError(msg)
|
73 |
|
74 |
+
self.logger.info(f"{self.pipeline.model.device = }")
|
75 |
pipe_out = self.pipeline(*args)
|
76 |
# Just use the first output
|
77 |
if not isinstance(pipe_out[0], dict):
|
npc_bert_models/summary_module.py
CHANGED
@@ -30,25 +30,11 @@ class NpcBertGPT2():
|
|
30 |
|
31 |
self.model = EncoderDecoderModel.from_pretrained(self.pretrained_model)
|
32 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
33 |
-
|
34 |
-
|
35 |
-
self.pipeline = hf_pipeline("text2text-generation",
|
36 |
-
model=self.model,
|
37 |
-
tokenizer=self.tokenizer,
|
38 |
-
device='cuda',
|
39 |
-
num_beams=4,
|
40 |
-
do_sample=True,
|
41 |
-
top_k = 5,
|
42 |
-
temperature=.95,
|
43 |
-
early_stopping=True,
|
44 |
-
no_repeat_ngram_size=5,
|
45 |
-
max_new_tokens=60)
|
46 |
-
self.pipeline.model.to('cuda')
|
47 |
-
except Exception as e:
|
48 |
-
self.pipeline = hf_pipeline("text2text-generation",
|
49 |
model=self.model,
|
50 |
tokenizer=self.tokenizer,
|
51 |
-
|
52 |
num_beams=4,
|
53 |
do_sample=True,
|
54 |
top_k = 5,
|
@@ -56,8 +42,7 @@ class NpcBertGPT2():
|
|
56 |
early_stopping=True,
|
57 |
no_repeat_ngram_size=5,
|
58 |
max_new_tokens=60)
|
59 |
-
|
60 |
-
self.logger.exception(e)
|
61 |
|
62 |
@spaces.GPU
|
63 |
def __call__(self, *args):
|
@@ -80,8 +65,7 @@ class NpcBertGPT2():
|
|
80 |
msg = "Model was not initialized, have you run load()?"
|
81 |
raise BrokenPipeError(msg)
|
82 |
|
83 |
-
self.logger.info(f"
|
84 |
-
self.logger.info("Model: {self.pipeline.model}")
|
85 |
pipe_out, = self.pipeline(*args)
|
86 |
pipe_out = pipe_out['generated_text']
|
87 |
self.logger.info(f"Generated text: {pipe_out}")
|
|
|
30 |
|
31 |
self.model = EncoderDecoderModel.from_pretrained(self.pretrained_model)
|
32 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
33 |
+
|
34 |
+
self.pipeline = hf_pipeline("text2text-generation",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
model=self.model,
|
36 |
tokenizer=self.tokenizer,
|
37 |
+
device_map='auto',
|
38 |
num_beams=4,
|
39 |
do_sample=True,
|
40 |
top_k = 5,
|
|
|
42 |
early_stopping=True,
|
43 |
no_repeat_ngram_size=5,
|
44 |
max_new_tokens=60)
|
45 |
+
|
|
|
46 |
|
47 |
@spaces.GPU
|
48 |
def __call__(self, *args):
|
|
|
65 |
msg = "Model was not initialized, have you run load()?"
|
66 |
raise BrokenPipeError(msg)
|
67 |
|
68 |
+
self.logger.info(f"Model: {self.pipeline.model.device = }")
|
|
|
69 |
pipe_out, = self.pipeline(*args)
|
70 |
pipe_out = pipe_out['generated_text']
|
71 |
self.logger.info(f"Generated text: {pipe_out}")
|