Spaces:
Running
on
Zero
Running
on
Zero
Update versions
Browse files- app.py +2 -1
- npc_bert_models/cls_module.py +1 -0
- npc_bert_models/mlm_module.py +2 -0
- npc_bert_models/summary_module.py +2 -1
- requirements.txt +2 -3
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from logging import PlaceHolder
|
2 |
import gradio as gr
|
3 |
import os, sys
|
|
|
4 |
from npc_bert_models.gradio_demo import *
|
5 |
from npc_bert_models.mlm_module import NpcBertMLM
|
6 |
from npc_bert_models.cls_module import NpcBertCLS
|
@@ -9,7 +10,7 @@ from npc_bert_models.app_logger import get_logger
|
|
9 |
import json
|
10 |
|
11 |
class main_window():
|
12 |
-
logger = get_logger('main')
|
13 |
def __init__(self):
|
14 |
self.interface = None
|
15 |
self.examples = json.load(open("examples.json", 'r'))
|
|
|
1 |
from logging import PlaceHolder
|
2 |
import gradio as gr
|
3 |
import os, sys
|
4 |
+
import spaces
|
5 |
from npc_bert_models.gradio_demo import *
|
6 |
from npc_bert_models.mlm_module import NpcBertMLM
|
7 |
from npc_bert_models.cls_module import NpcBertCLS
|
|
|
10 |
import json
|
11 |
|
12 |
class main_window():
|
13 |
+
logger = get_logger('main', log_level='debug')
|
14 |
def __init__(self):
|
15 |
self.interface = None
|
16 |
self.examples = json.load(open("examples.json", 'r'))
|
npc_bert_models/cls_module.py
CHANGED
@@ -50,6 +50,7 @@ class NpcBertCLS():
|
|
50 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
51 |
try:
|
52 |
self.pipeline = hf_pipeline("text-classification", model=self.model, tokenizer=self.tokenizer, device='cuda')
|
|
|
53 |
except Exception as e:
|
54 |
self.pipeline = hf_pipeline("text-classification", model=self.model, tokenizer=self.tokenizer, device='cpu')
|
55 |
self.logger.warning("No GPU!")
|
|
|
50 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
51 |
try:
|
52 |
self.pipeline = hf_pipeline("text-classification", model=self.model, tokenizer=self.tokenizer, device='cuda')
|
53 |
+
self.pipeline.model.to('cuda')
|
54 |
except Exception as e:
|
55 |
self.pipeline = hf_pipeline("text-classification", model=self.model, tokenizer=self.tokenizer, device='cpu')
|
56 |
self.logger.warning("No GPU!")
|
npc_bert_models/mlm_module.py
CHANGED
@@ -49,6 +49,7 @@ class NpcBertMLM():
|
|
49 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
50 |
try:
|
51 |
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device='cuda')
|
|
|
52 |
except Exception as e:
|
53 |
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device='cpu')
|
54 |
self.logger.warning("No GPU")
|
@@ -75,6 +76,7 @@ class NpcBertMLM():
|
|
75 |
if self.pipeline is None:
|
76 |
msg = "Model was not initialized, have you run load()?"
|
77 |
raise BrokenPipeError(msg)
|
|
|
78 |
pipe_out = self.pipeline(*args)
|
79 |
# Just use the first output
|
80 |
if not isinstance(pipe_out[0], dict):
|
|
|
49 |
self.tokenizer = AutoTokenizer.from_pretrained(self.pretrained_model)
|
50 |
try:
|
51 |
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device='cuda')
|
52 |
+
self.pipeline.model.to('cuda')
|
53 |
except Exception as e:
|
54 |
self.pipeline = hf_pipeline("fill-mask", model=self.model, tokenizer=self.tokenizer, device='cpu')
|
55 |
self.logger.warning("No GPU")
|
|
|
76 |
if self.pipeline is None:
|
77 |
msg = "Model was not initialized, have you run load()?"
|
78 |
raise BrokenPipeError(msg)
|
79 |
+
|
80 |
pipe_out = self.pipeline(*args)
|
81 |
# Just use the first output
|
82 |
if not isinstance(pipe_out[0], dict):
|
npc_bert_models/summary_module.py
CHANGED
@@ -43,6 +43,7 @@ class NpcBertGPT2():
|
|
43 |
early_stopping=True,
|
44 |
no_repeat_ngram_size=5,
|
45 |
max_new_tokens=60)
|
|
|
46 |
except Exception as e:
|
47 |
self.pipeline = hf_pipeline("text2text-generation",
|
48 |
model=self.model,
|
@@ -80,7 +81,7 @@ class NpcBertGPT2():
|
|
80 |
raise BrokenPipeError(msg)
|
81 |
|
82 |
self.logger.info(f"Called with arguments {args = }")
|
83 |
-
|
84 |
pipe_out, = self.pipeline(*args)
|
85 |
pipe_out = pipe_out['generated_text']
|
86 |
self.logger.info(f"Generated text: {pipe_out}")
|
|
|
43 |
early_stopping=True,
|
44 |
no_repeat_ngram_size=5,
|
45 |
max_new_tokens=60)
|
46 |
+
self.pipeline.model.to('cuda')
|
47 |
except Exception as e:
|
48 |
self.pipeline = hf_pipeline("text2text-generation",
|
49 |
model=self.model,
|
|
|
81 |
raise BrokenPipeError(msg)
|
82 |
|
83 |
self.logger.info(f"Called with arguments {args = }")
|
84 |
+
self.logger.info("Model: {self.pipeline.model}")
|
85 |
pipe_out, = self.pipeline(*args)
|
86 |
pipe_out = pipe_out['generated_text']
|
87 |
self.logger.info(f"Generated text: {pipe_out}")
|
requirements.txt
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
torch
|
2 |
scikit-learn >= 1.4.0
|
3 |
pandas >= 2.1.4
|
4 |
-
transformers >= 4.37.2
|
5 |
-
numpy >= 1.26
|
6 |
gradio >= 4.18, < 4.50
|
7 |
scipy >= 1.12
|
8 |
spaces
|
|
|
1 |
+
torch == 2.2.2
|
2 |
scikit-learn >= 1.4.0
|
3 |
pandas >= 2.1.4
|
4 |
+
transformers >= 4.37.2, < 4.50, < 2.0
|
|
|
5 |
gradio >= 4.18, < 4.50
|
6 |
scipy >= 1.12
|
7 |
spaces
|