mathiasleys commited on
Commit
3380ee9
·
1 Parent(s): eddc0a2

Initial commit

Browse files
Files changed (49) hide show
  1. .gitattributes +1 -0
  2. .gitignore +2 -0
  3. README.md +6 -4
  4. app.py +280 -0
  5. assets/images/cannibalization.png +0 -0
  6. assets/images/dynamic_demand.gif +3 -0
  7. assets/images/flywheel_1.png +0 -0
  8. assets/images/flywheel_2.png +0 -0
  9. assets/images/flywheel_3.png +0 -0
  10. assets/images/gaussian_process.gif +3 -0
  11. assets/images/ideal_case_demand.png +0 -0
  12. assets/images/ideal_case_demand_fitted.png +0 -0
  13. assets/images/ideal_case_optimal_profit.png +0 -0
  14. assets/images/ideal_case_profit_curve.png +0 -0
  15. assets/images/posterior_demand.png +0 -0
  16. assets/images/posterior_demand_2.png +0 -0
  17. assets/images/posterior_demand_sample.png +0 -0
  18. assets/images/posterior_demand_sample_2.png +0 -0
  19. assets/images/posterior_profit.png +0 -0
  20. assets/images/posterior_profit_2.png +0 -0
  21. assets/images/posterior_profit_sample.png +0 -0
  22. assets/images/posterior_profit_sample_2.png +0 -0
  23. assets/images/realistic_demand.png +0 -0
  24. assets/images/realistic_demand_latent_curve.png +0 -0
  25. assets/images/updated_prices_demand.png +0 -0
  26. assets/precalc_results/posterior_0.05.pkl +3 -0
  27. assets/precalc_results/posterior_0.1.pkl +3 -0
  28. assets/precalc_results/posterior_0.15.pkl +3 -0
  29. assets/precalc_results/posterior_0.2.pkl +3 -0
  30. assets/precalc_results/posterior_0.25.pkl +3 -0
  31. assets/precalc_results/posterior_0.3.pkl +3 -0
  32. assets/precalc_results/posterior_0.35.pkl +3 -0
  33. assets/precalc_results/posterior_0.4.pkl +3 -0
  34. assets/precalc_results/posterior_0.45.pkl +3 -0
  35. assets/precalc_results/posterior_0.5.pkl +3 -0
  36. assets/precalc_results/posterior_0.55.pkl +3 -0
  37. assets/precalc_results/posterior_0.6.pkl +3 -0
  38. assets/precalc_results/posterior_0.65.pkl +3 -0
  39. assets/precalc_results/posterior_0.7.pkl +3 -0
  40. assets/precalc_results/posterior_0.75.pkl +3 -0
  41. assets/precalc_results/posterior_0.8.pkl +3 -0
  42. assets/precalc_results/posterior_0.85.pkl +3 -0
  43. assets/precalc_results/posterior_0.9.pkl +3 -0
  44. assets/precalc_results/posterior_0.95.pkl +3 -0
  45. config.py +8 -0
  46. helpers/thompson_sampling.py +125 -0
  47. requirements.txt +3 -0
  48. scripts/generate_posterior.py +33 -0
  49. scripts/posterior.py +19 -0
.gitattributes CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zst filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zst filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ *.gif filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ venv/
2
+ __pycache__/
README.md CHANGED
@@ -1,12 +1,14 @@
1
  ---
2
- title: Dynamic Pricing
3
- emoji: 📚
4
  colorFrom: green
5
  colorTo: gray
6
  sdk: streamlit
7
- sdk_version: 1.10.0
8
  app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
1
  ---
2
+ title: 💸 Dynamic Pricing 💸
3
+ emoji: 💸
4
  colorFrom: green
5
  colorTo: gray
6
  sdk: streamlit
7
+ sdk_version: 1.13.0
8
  app_file: app.py
9
  pinned: false
10
  ---
11
 
12
+ This demo will explore the current state-of-the-art in dynamic pricing methods.
13
+
14
+ We will cover the motivation behind dynamic pricing and discuss how we can leverage Bayesian statistics, Thompson sampling and Gaussian processes to derive an optimal price-setting strategy.
app.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Streamlit entrypoint"""
2
+
3
+ import base64
4
+ import time
5
+
6
+ import numpy as np
7
+ import streamlit as st
8
+ import sympy
9
+
10
+ from helpers.thompson_sampling import ThompsonSampler
11
+
12
+ eta, a, p, D, profit, var_cost, fixed_cost = sympy.symbols("eta a p D Profit varcost fixedcost")
13
+ np.random.seed(42)
14
+
15
+ st.set_page_config(
16
+ page_title="💸 Dynamic Pricing 💸",
17
+ page_icon="💸",
18
+ layout="centered",
19
+ initial_sidebar_state="auto",
20
+ menu_items={
21
+ 'Get help': None,
22
+ 'Report a bug': None,
23
+ 'About': "https://www.ml6.eu/",
24
+ }
25
+ )
26
+
27
+ st.title("💸 Dynamic Pricing 💸")
28
+ st.subheader("Setting optimal prices with Bayesian stats 📈")
29
+
30
+ # (1) Intro
31
+ st.header("Let's start with the basics 🏁")
32
+
33
+ st.markdown("The beginning is usually a good place to start so we'll kick things off there.")
34
+ st.markdown("""The one crucial piece information we need to find the optimal price is
35
+ **how demand behaves over different price points**. \nIf we can get make a decent guess of what we
36
+ can expect demand to be for a wide range of prices, we can figure out which price optimizes our target
37
+ (i.e., revenue, profit, ...).""")
38
+ st.markdown("""For the keen economists amongst you, this is beginning to sound a lot like a
39
+ **demand curve**.""")
40
+
41
+ st.markdown("""Estimating a demand curve, sounds easy enough right? \nLet's assume we have
42
+ demand with constant price elasticity; so a certain percent change in price will cause a
43
+ constant percent change in demand, independent of the price level. This is often seen as a
44
+ reasonable proxy for demand curves in the wild.""")
45
+ st.markdown("So our data will look something like this:")
46
+ st.image("assets/images/ideal_case_demand.png")
47
+ st.markdown("""Alright now we can get out our trusted regression toolbox and fit a nice curve
48
+ through the data because we know that our constant-elasticity demand function looks something
49
+ like this:""")
50
+ st.latex(sympy.latex(sympy.Eq(sympy.Function(D)(p), a*p**(-eta), evaluate=False)))
51
+ st.write("with shape parameter a and price elasticity η")
52
+ st.image("assets/images/ideal_case_demand_fitted.png")
53
+ st.markdown("""Now that we have a reasonable estimate of our demand, we can derive our expected
54
+ profit at different price points because we know the following holds:""")
55
+ st.latex(f"{profit} = {p}*{sympy.Function(D)(p)} - [{var_cost}*{sympy.Function(D)(p)} + {fixed_cost}]")
56
+ st.image("assets/images/ideal_case_profit_curve.png")
57
+ st.markdown("""Finally we can dust off our good old-fashioned high-school math and find the
58
+ price which we expect will optimize profit which is ultimately the goal of all this.""")
59
+ st.image("assets/images/ideal_case_optimal_profit.png")
60
+ st.markdown("""Voilà there you have it: we should price this product at 4.24 and we can expect
61
+ a bottom-line profit of 7.34""")
62
+ st.markdown("So can we kick back & relax now? \nWell, there are a few issues with what we just did.")
63
+
64
+ # (2) Dynamic demand curves
65
+ st.header("The demands they are a-changin' 🎸")
66
+ st.markdown("""We've got a first bit of bad news: unfortunately, you can't just estimate a demand
67
+ curve once and be done with it. \nWhy? Because demand is influenced by many factors (e.g., market
68
+ trends, competitor actions, human behavior, etc.) that tend to change a lot over time.""")
69
+ st.write("Below you can see an (exaggerated) example of what we're talking about:")
70
+
71
+ with open("assets/images/dynamic_demand.gif", "rb") as file_:
72
+ contents = file_.read()
73
+ data_url = base64.b64encode(contents).decode("utf-8")
74
+
75
+ st.markdown(
76
+ f'<img src="data:image/gif;base64,{data_url}" alt="dynamic demand">',
77
+ unsafe_allow_html=True,
78
+ )
79
+ st.markdown("""Now, you may think we can solve this issue by periodically re-estimating the demand
80
+ curve. \nAnd you would be very right! But also very wrong as this leads us nicely to the
81
+ next issue.""")
82
+
83
+ # (3) Constrained data
84
+ st.header("Where are we getting this data anyways? 🤔")
85
+ st.markdown("""So far, we have assumed that we get (and keep getting) data on demand levels at
86
+ different price points. \n
87
+ Not only is this assumption **unrealistic**, it is also very **undesirable**""")
88
+ st.markdown("""Why? Because getting demand data on a wide spectrum of price points implies that
89
+ we are spending a significant amount of time setting prices at levels that are either too high or
90
+ too low! \n
91
+ Which is ironically exactly the opposite of what we set out to achieve.""")
92
+ st.markdown("In practice, our demand will rather look something like this:")
93
+ st.image("assets/images/realistic_demand.png")
94
+ st.markdown("""As we can see, we have tried three price points in the past (€7.5, €10 and €11) for
95
+ which we have collected demand data.""")
96
+ st.markdown("""On a side note: keep in mind that we still assume the same latent demand curve and
97
+ optimal price point of €4.24 \n
98
+ So (for the sake of the example) we have been massively overpricing our product in the past""")
99
+ st.image("assets/images/realistic_demand_latent_curve.png")
100
+ st.markdown("""This constrained data brings along a major challenge in estimating the demand curve
101
+ though. \n
102
+ Intuitively, it makes sense that we can make a reasonable estimate of expected demand at €8 or €9,
103
+ given the observed demand at €7.5 and €10. \nBut can we extrapolate further to €2 or €20 with the
104
+ same reasonable confidence?""")
105
+ st.markdown("""This is a nice example of a very well-known problem in statistics called the
106
+ **\"exploration-exploitation\" trade-off** \n
107
+ 👉 **Exploration**: We want to explore the demand for a diverse enough range of price points
108
+ so that we can accurately estimate our demand curve. \n
109
+ 👉 **Exploitation**: We want to exploit all the knowledge we have gained through exploring and
110
+ actually do what we set out to do: set our price at an optimal level.""")
111
+
112
+ # (4) Thompson sampling explanation
113
+ st.header("Enter: Thompson Sampling 📊")
114
+ st.markdown("""As we mentioned, this is a well-known problem in statistics. So luckily for us,
115
+ there is a pretty neat solution in the form of **Thompson sampling**!""")
116
+ st.markdown("""Basically instead of estimating one demand function based on the data available to
117
+ us, we will estimate a probability distribution of demand functions or simply put, for every
118
+ possible demand function that fits our functional form (i.e. constant elasticity)
119
+ we will estimate the probability that it is the correct one, given our data.""")
120
+ st.markdown("""Or mathematically speaking, we will place a prior distribution on the parameters
121
+ that define our demand function and update these priors to posterior distributions via Bayes rule,
122
+ thus obtaining a posterior distribution for our demand function""")
123
+ st.markdown("""Thompson sampling then entails just sampling a demand function out of this
124
+ distribution, calculating the optimal price given this demand function, observing demand for this
125
+ new price point and using this information to refine our demand function estimates.""")
126
+ st.image("assets/images/flywheel_1.png")
127
+ st.markdown("""So: \n
128
+ 👉 When we are **less certain** of our estimates, we will sample more diverse demand functions,
129
+ which means that we will also explore more diverse price points. Thus, we will **explore**. \n
130
+ 👉 When we are **more certain** of our estimates, we will sample a demand function close to
131
+ the real one & set a price close to the optimal price more often. Thus, we will **exploit**.""")
132
+
133
+ st.markdown("""With that said, we'll take another look at our constrained data and see whether
134
+ Thompson sampling gets us any closer to the optimal price of €4.24""")
135
+ st.image("assets/images/realistic_demand_latent_curve.png")
136
+ st.markdown("""Let's start working our mathemagic: \n
137
+ We'll start off by placing semi-informed priors on the parameters that make up our
138
+ demand function.""")
139
+
140
+ st.latex(f"{sympy.latex(a)} \sim N(μ=0,σ=2)")
141
+ st.latex(f"{sympy.latex(eta)} \sim N(μ=0.5,σ=0.5)")
142
+ st.latex("sd \sim Exp(\lambda=1)")
143
+ st.latex(f"{sympy.latex(D)}|P=p \sim N(μ={sympy.latex(a*p**(-eta))},σ=sd)")
144
+
145
+ st.markdown("""These priors are semi-informed because we have the prior knowledge that
146
+ price elasticity is most likely between 0 and 1. As for the other parameters, we have little
147
+ knowledge about them so we can place a pretty uninformative prior.""")
148
+ st.markdown("If that made sense to you, great. If it didn't, don't worry about it")
149
+
150
+ st.markdown("""Now that are priors are taken care of, we can update these beliefs by incorporating
151
+ the data at the €7.5, €10 and €11 price levels we have available to us.""")
152
+ st.markdown("The resulting demand & profit curve distributions look a little something like this:")
153
+ st.image(["assets/images/posterior_demand.png", "assets/images/posterior_profit.png"])
154
+
155
+ st.markdown("""It's time to sample one demand curve out of this posterior distribution. \n
156
+ The lucky curve is:""")
157
+ st.image("assets/images/posterior_demand_sample.png")
158
+ st.markdown("This results in the following expected profit curve")
159
+ st.image("assets/images/posterior_profit_sample.png")
160
+ st.markdown("""And eventually we arrive at a new price: €5.25! Which is indeed considerably closer
161
+ to the actual optimal price of €4.24""")
162
+ st.markdown("""Now that we have our first updated price point, why stop there? Let's simulate 10
163
+ demand data points at this price point from out latent demand curve and check whether Thompson
164
+ sampling will edge us even closer to that optimal €4.24 point""")
165
+ st.image("assets/images/updated_prices_demand.png")
166
+ st.markdown("""We know the drill by down. \n
167
+ Let's recalculate our posteriors with this extra information.""")
168
+ st.image(["assets/images/posterior_demand_2.png", "assets/images/posterior_profit_2.png"])
169
+ st.markdown("""We immediately notice that the demand (and profit) posteriors are much less spread
170
+ apart this time around which implies that we are more confident in our predictions""")
171
+ st.markdown("Now, we can sample just one curve from the distribution")
172
+ st.image(["assets/images/posterior_demand_sample_2.png", "assets/images/posterior_profit_sample_2.png"])
173
+ st.markdown("""And finally we arrive at a price point of €4.44 which is eerily close to
174
+ the actual optimum of €4.24.""")
175
+
176
+ # (5) Thompson sampling demo
177
+ st.header("Demo time 🎮")
178
+ st.markdown("Now that we have covered the theory, you can go ahead and try it our for yourself!")
179
+
180
+ thompson_sampler = ThompsonSampler()
181
+ demo_button = st.checkbox(
182
+ label='Ready for the Demo? 🤯',
183
+ help="Starts interactive Thompson sampling demo"
184
+ )
185
+ elasticity = st.slider(
186
+ "Adjust latent elasticity",
187
+ key="latent_elasticity",
188
+ min_value=0.05,
189
+ max_value=0.95,
190
+ value=0.15,
191
+ step=0.05,
192
+ )
193
+ while demo_button:
194
+ thompson_sampler.run()
195
+ time.sleep(1)
196
+
197
+ # (6) Extra topics
198
+ st.header("Some final remarks")
199
+
200
+ st.markdown("""Because we have purposefully kept the example above quite simple, you may still be
201
+ wondering what happens when added complexities show up. \n
202
+ Let's discuss some of those concerns FAQ-style:""")
203
+
204
+ st.subheader("👉 Isn't this constant-elasticity model a bit too simple to work in practice?")
205
+ st.markdown("Brief answer: usually yes it is.")
206
+ st.markdown("""Luckily, more flexible methods exist. \n
207
+ We would recommend to use Gaussian Processes. We won't go into how these work here but the main idea
208
+ is that it doesn't impose a restrictive functional form onto the demand function but rather lets
209
+ the data speak for itself.""")
210
+
211
+ with open("assets/images/gaussian_process.gif", "rb") as file_:
212
+ contents = file_.read()
213
+ data_url = base64.b64encode(contents).decode("utf-8")
214
+
215
+ st.markdown(
216
+ f'<img src="data:image/gif;base64,{data_url}" alt="gaussian process">',
217
+ unsafe_allow_html=True,
218
+ )
219
+ st.markdown("""If you do want to learn more, we recommend these links:
220
+ [1](https://distill.pub/2019/visual-exploration-gaussian-processes/),
221
+ [2](https://thegradient.pub/gaussian-process-not-quite-for-dummies/),
222
+ [3](https://sidravi1.github.io/blog/2018/05/15/latent-gp-and-binomial-likelihood)""")
223
+
224
+ st.subheader("""👉 Price optimization is much more complex than just finding the point that maximizes a simple profit function. What about inventory constraints, complex cost structures, ...?""")
225
+ st.markdown("""It sure is but the nice thing about our setup is that it consists of three
226
+ components that you can change pretty much independently from each other. \n
227
+ This means that you can make the price optimization pillar arbitrarily custom/complex. As long as
228
+ it takes in a demand function and spits out a price.""")
229
+ st.image("assets/images/flywheel_2.png")
230
+ st.markdown("You can tune the other two steps as much as you like too.")
231
+ st.image("assets/images/flywheel_3.png")
232
+
233
+ st.subheader("👉 Changing prices has a huge impact. How can I mitigate this during experimentation?")
234
+ st.markdown("There are a few things we can do to minimize risk:")
235
+ st.markdown("""👉 **A/B testing**: You can do a gradual roll-out of the new pricing system where a
236
+ small (but increasing) percentage of your transactions are based on this new system. This allows you
237
+ to start small & track/grow the impact over time.""")
238
+ st.markdown("""👉 **Limit products**: Similarly to A/B testing, you can also segment on the
239
+ product-level. For instance, you can start gradually rolling out dynamic pricing for one product
240
+ type and extend this over time.""")
241
+ st.markdown("""👉 **Bound price range**: Theoretically, Thompson sampling in its purest form can
242
+ lead to any arbitrary price point (albeit with an increasingly low probability). In order to limit
243
+ the risk here, you can simply place a upper/lower bound on the price range you are comfortable
244
+ experimenting in.""")
245
+ st.markdown("""On top of all this, Bayesian methods (by design) explicitly quantify uncertainty.
246
+ This allows you to have a very concrete view on the variance of our demand estimates""")
247
+
248
+ st.subheader("👉 What if I have multiple products that can cannibalize each other?")
249
+ st.markdown("Here it really depends")
250
+ st.markdown("""👉 **If you have a handful of products**, we can simply reformulate our objective while
251
+ keeping our methods analogous. \n
252
+ Instead of tuning one price to optimize profit for the demand function of one product, we tune N
253
+ prices to optimize profit for the joint demand function of N products. This joint demand function
254
+ can then account for correlations in demand within products.""")
255
+ st.markdown("""👉 **If you have hundreds, thousands or more products**, we're sure you can imagine that
256
+ the procedure described above becomes increasingly infeasible. \n
257
+ A practical alternative is to group substitutable products into "baskets" and define the "price of
258
+ the basket" as the average price of all products in the basket. \n
259
+ If we assume that the products in baskets are subtitutable but the products in different baskets are
260
+ not, we can optimize basket prices indepedently from one another. \n
261
+ Finally, if we also assume that cannibalization remains constant if the ratio of prices remains
262
+ constant, we can calculate individual product prices as a fixed ratio of its basket price. \n""")
263
+ st.markdown("""For example, if a "burger basket" consists of a hamburger (€1) and a cheeseburger
264
+ (€3), then the "burger price" is ((€1 + €3) / 2 =) €2. So a hamburger costs 50% of the burger price
265
+ and a cheeseburger costs 150% of the burger price. \n
266
+ If we change the burger's price to €3, a hamburger will cost (50% * €3 =) €1.5 and a cheeseburger
267
+ will cost (150% * €3 =) €4.5 because we assume that the cannibalization effect between hamburgers &
268
+ cheeseburgers is the same when hamburgers cost €1 & cheeseburgers cost €3 and when hamburgers cost
269
+ €1.5 & cheeseburgers cost €4.5""")
270
+ st.image("assets/images/cannibalization.png")
271
+
272
+ st.subheader("👉 Is dynamic pricing even relevant for slow-selling products?")
273
+ st.markdown("""The boring answer is that it depends. It depends on how dynamic the market is, the
274
+ quality of the prior information, ...""")
275
+ st.markdown("""But obviously this isn't very helpful. \nIn general, we notice that you can already
276
+ get quite far with limited data, especially if you have an accurate prior belief on how the demand
277
+ likely behaves.""")
278
+ st.markdown("""For reference, in our simple example where we showed a Thompson sampling update, we
279
+ were already able to gain a lot of confidence in our estimates with just 10 extra demand
280
+ observations.""")
assets/images/cannibalization.png ADDED
assets/images/dynamic_demand.gif ADDED

Git LFS Details

  • SHA256: dbc3058a104149d179a787527590e407192ff26b7cd0142a81855317eab81416
  • Pointer size: 132 Bytes
  • Size of remote file: 2.39 MB
assets/images/flywheel_1.png ADDED
assets/images/flywheel_2.png ADDED
assets/images/flywheel_3.png ADDED
assets/images/gaussian_process.gif ADDED

Git LFS Details

  • SHA256: 49c0bd1e0a0e4584a100934aa9f7f28ba9257dad84d990e7a42f9911fcb1569f
  • Pointer size: 132 Bytes
  • Size of remote file: 1.09 MB
assets/images/ideal_case_demand.png ADDED
assets/images/ideal_case_demand_fitted.png ADDED
assets/images/ideal_case_optimal_profit.png ADDED
assets/images/ideal_case_profit_curve.png ADDED
assets/images/posterior_demand.png ADDED
assets/images/posterior_demand_2.png ADDED
assets/images/posterior_demand_sample.png ADDED
assets/images/posterior_demand_sample_2.png ADDED
assets/images/posterior_profit.png ADDED
assets/images/posterior_profit_2.png ADDED
assets/images/posterior_profit_sample.png ADDED
assets/images/posterior_profit_sample_2.png ADDED
assets/images/realistic_demand.png ADDED
assets/images/realistic_demand_latent_curve.png ADDED
assets/images/updated_prices_demand.png ADDED
assets/precalc_results/posterior_0.05.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f67a5aad9591a4c65856ba0a9577e17defdb076631685d2e8dabb186a9d0c46e
3
+ size 4284392
assets/precalc_results/posterior_0.1.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dcf55382b9dfc8fe527ba19d4a825eb2611e1dbe65689c8b673abb1aae9ffc2
3
+ size 4284392
assets/precalc_results/posterior_0.15.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:972b1d1d4c4a4765172b16acab7de44daee92b86c455f62b80d499992b0323cf
3
+ size 4284392
assets/precalc_results/posterior_0.2.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc48fe2c018588887488477ab37fcb3524d2bfda584119bd2c7d28b4393bc523
3
+ size 4284392
assets/precalc_results/posterior_0.25.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9be07516c741b95ef5b9ecfeeabf8daa09691843ada1aa5da4e99d865285be8c
3
+ size 4284392
assets/precalc_results/posterior_0.3.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:859c2422cc36d19441bc176820a3f686a4c44ceaa99466ac3a1daa39704127ff
3
+ size 4284392
assets/precalc_results/posterior_0.35.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfde23737ffcc92c6623d2a2ea107bdf1e126730573da40a2a72f9fe0c4559fa
3
+ size 4284392
assets/precalc_results/posterior_0.4.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6d12e42761d4b92c39f6568b1fe473d3ed9a7b590c32c23375ed06b7cbf7ef7
3
+ size 4284392
assets/precalc_results/posterior_0.45.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a258c4695a392a24b090927444c0a3c25aa9508b36c8558b42844552f2e6a980
3
+ size 4284392
assets/precalc_results/posterior_0.5.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f67fd5ca0f744f1f17e725b3efeb2e30b41117e8ed2f8f62ffdc531bff1c669a
3
+ size 4284392
assets/precalc_results/posterior_0.55.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be1fe091349573f37b4b8b8062805e78d860d8e3c3f2899223bad65c1abdb0ba
3
+ size 4284392
assets/precalc_results/posterior_0.6.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58bd0daad50052e0b6b706f642a4acf35ba065437d1181dcf361019e90688adb
3
+ size 4284392
assets/precalc_results/posterior_0.65.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2f44e9b821e0a302b8a9a869aa649d391a2a64335264425210e6a8a736c3670
3
+ size 4284392
assets/precalc_results/posterior_0.7.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fead4ab62f4cd4d6f1bff729ee033deca2e8ed7d6b0f9aa68b2371d61d412e1
3
+ size 4284392
assets/precalc_results/posterior_0.75.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aff1524ebc87a8077a2ff2bf999b3561183500009e782c612c7cfda719b8e8c2
3
+ size 4284392
assets/precalc_results/posterior_0.8.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fd7c5cbe4db7d02635ed89b6a25c61f03d4a8727e399b6a506055bdd3571e8f
3
+ size 4284392
assets/precalc_results/posterior_0.85.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf6a6249e9946df213688e1d89325a1e69d9f74372c2b759269b6552ad8a15df
3
+ size 4284392
assets/precalc_results/posterior_0.9.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:370a91ed077fd4e89b0fe576b9427731181d07d00d861a57b032ad4e317d0754
3
+ size 4284392
assets/precalc_results/posterior_0.95.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc69a5b466f2a5d6a1797617ced35cf6544285d44930d84c9a534af070ba60e6
3
+ size 4284392
config.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ """Configuration variables"""
2
+
3
+ FIXED_COST = 3
4
+ VARIABLE_COST = 0.2
5
+
6
+ LATENT_ELASTICITY = 0.25
7
+ LATENT_SHAPE = 2
8
+ LATENT_STDEV = 0.25
helpers/thompson_sampling.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Helper file for Thompson sampling"""
2
+
3
+ import pickle
4
+ import random
5
+
6
+ import matplotlib.pyplot as plt
7
+ import numpy as np
8
+ import streamlit as st
9
+
10
+ import config as cfg
11
+
12
+ random.seed(42)
13
+
14
+ class ThompsonSampler:
15
+ def __init__(self):
16
+ self.placeholder = st.empty()
17
+
18
+ self.latent_elasticity = cfg.LATENT_ELASTICITY
19
+ self.price_observations = np.concatenate(
20
+ [np.repeat(10,10), np.repeat(7.5,25), np.repeat(11,15)]
21
+ )
22
+ self.update_demand_observations()
23
+
24
+ self.possible_prices = np.linspace(0, 20, 100)
25
+ self.price_samples = []
26
+ self.latent_demand = self.calc_latent_demand()
27
+ self.latent_price = self.calc_optimal_price(self.latent_demand, sample=False)
28
+ self.update_posteriors()
29
+
30
+ def update_demand_observations(self):
31
+ self.demand_observations = np.exp(
32
+ np.random.normal(
33
+ loc=-self.latent_elasticity*self.price_observations+cfg.LATENT_SHAPE,
34
+ scale=cfg.LATENT_STDEV,
35
+ )
36
+ )
37
+
38
+ def update_elasticity(self):
39
+ self.latent_elasticity = st.session_state.latent_elasticity
40
+ self.price_samples = []
41
+ self.latent_demand = self.calc_latent_demand()
42
+ self.update_demand_observations()
43
+ self.latent_price = self.calc_optimal_price(self.latent_demand, sample=False)
44
+ self.update_posteriors(samples=75)
45
+ self.create_plots()
46
+
47
+ def create_plots(self, highlighted_sample=None):
48
+ with self.placeholder.container():
49
+ posterior_plot, price_plot = st.columns(2)
50
+ with posterior_plot:
51
+ st.markdown("## Demands")
52
+ fig = self.create_posteriors_plot(highlighted_sample)
53
+ st.write(fig)
54
+ plt.close(fig)
55
+ with price_plot:
56
+ st.markdown("## Prices")
57
+ fig = self.create_price_plot()
58
+ st.write(fig)
59
+ plt.close(fig)
60
+
61
+ def create_price_plot(self):
62
+ fig = plt.figure()
63
+ plt.xlabel("Price")
64
+ plt.yticks(color='w')
65
+
66
+ price_distr = [self.calc_optimal_price(post_demand, sample=False)
67
+ for post_demand in self.posterior]
68
+ plt.violinplot(price_distr, vert=False, showextrema=False)
69
+
70
+ for price in self.price_samples:
71
+ plt.plot(price, 1, marker='o', markersize = 5, color='grey')
72
+
73
+ plt.axhline(1, color='black')
74
+ plt.axvline(self.latent_price, 0, color='red')
75
+
76
+ return fig
77
+
78
+ def create_posteriors_plot(self, highlighted_sample=None):
79
+ fig = plt.figure()
80
+ plt.xlabel("Price")
81
+ plt.ylabel("Demand")
82
+ plt.xlim(0,20)
83
+ plt.ylim(0,10)
84
+
85
+ plt.scatter(self.price_observations, self.demand_observations)
86
+ plt.plot(self.possible_prices, self.latent_demand, color="red")
87
+
88
+ for posterior_sample in self.posterior_samples:
89
+ plt.plot(self.possible_prices, posterior_sample, color="grey", alpha=0.15)
90
+ if highlighted_sample is not None:
91
+ plt.plot(self.possible_prices, highlighted_sample, color="black")
92
+ return fig
93
+
94
+ def calc_latent_demand(self):
95
+ return np.exp(
96
+ -self.latent_elasticity*self.possible_prices + cfg.LATENT_SHAPE
97
+ )
98
+
99
+ @staticmethod
100
+ @np.vectorize
101
+ def _cost(demand):
102
+ return cfg.VARIABLE_COST*demand + cfg.FIXED_COST
103
+
104
+ def calc_optimal_price(self, sampled_demand, sample=False):
105
+ revenue = self.possible_prices * sampled_demand
106
+ profit = revenue - self._cost(sampled_demand)
107
+ optimal_price = self.possible_prices[np.argmax(profit)]
108
+ if sample:
109
+ self.price_samples.append(optimal_price)
110
+ return optimal_price
111
+
112
+ def update_posteriors(self, samples=75):
113
+ with open(f"assets/precalc_results/posterior_{self.latent_elasticity}.pkl", "rb") as post:
114
+ self.posterior = pickle.load(post)
115
+ self.posterior_samples = random.sample(self.posterior, samples)
116
+
117
+ def pick_posterior(self):
118
+ posterior_sample = random.choice(self.posterior_samples)
119
+ self.calc_optimal_price(posterior_sample, sample=True)
120
+ self.create_plots(highlighted_sample=posterior_sample)
121
+
122
+ def run(self):
123
+ if st.session_state.latent_elasticity != self.latent_elasticity:
124
+ self.update_elasticity()
125
+ self.pick_posterior()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pymc3==3.11.5
2
+ streamlit==1.13.0
3
+ sympy==1.10.1
scripts/generate_posterior.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Script that generates, pickles and stores posterior data"""
2
+
3
+ import pickle
4
+
5
+ import numpy as np
6
+
7
+ import config as cfg
8
+ from scripts.posterior import PosteriorGenerator
9
+
10
+ np.random.seed(42)
11
+
12
+ if __name__ == '__main__':
13
+ demo_prices = np.concatenate([np.repeat(10,10), np.repeat(7.5,25), np.repeat(11,15)])
14
+ possible_prices = np.linspace(0,20,100)
15
+
16
+ for el in [x/100 for x in range(5,100,5)]:
17
+ demo_demands = np.exp(
18
+ np.random.normal(
19
+ loc=-el*demo_prices+cfg.LATENT_SHAPE,
20
+ scale=cfg.LATENT_STDEV,
21
+ )
22
+ )
23
+ ts = PosteriorGenerator(prices=demo_prices, demands=demo_demands)
24
+ posterior = ts.calc_posterior(samples=5000)
25
+ post_demand_samples = []
26
+ for idx in range(len(posterior)):
27
+ elas = posterior.get_values("elas")[idx]
28
+ shape = posterior.get_values("shape")[idx]
29
+ post_demand_sample = np.exp(elas*possible_prices + shape)
30
+ post_demand_samples.append(post_demand_sample)
31
+
32
+ with open(f"assets/precalc_results/posterior_{el}.pkl", 'wb') as f:
33
+ pickle.dump(post_demand_samples, f)
scripts/posterior.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """File for updating prior into posterior"""
2
+
3
+ import pymc3 as pm
4
+
5
+ class PosteriorGenerator:
6
+ def __init__(self, prices, demands):
7
+ self.price_observations = prices
8
+ self.demand_observations = demands
9
+
10
+ def calc_posterior(self, samples=1000):
11
+ with pm.Model():
12
+ elas = pm.Normal("elas",mu=-0.5, sd=0.5)
13
+ shape = pm.Normal("shape",mu=0, sd=2)
14
+ stdev = pm.Exponential("stdev",lam=1)
15
+ y_hat = pm.math.dot(elas, self.price_observations) + shape
16
+ log_observations = pm.math.log(self.demand_observations)
17
+ _ = pm.Normal("demand", mu=y_hat, observed=log_observations, sigma=stdev)
18
+ trace = pm.sample(samples)
19
+ return trace