Spaces:
Running
on
A10G
Running
on
A10G
BertChristiaens
commited on
Commit
·
be0162b
1
Parent(s):
e36ef6a
add queue
Browse files
models.py
CHANGED
@@ -4,6 +4,7 @@ from typing import List, Tuple, Dict
|
|
4 |
|
5 |
import streamlit as st
|
6 |
import torch
|
|
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
9 |
from time import perf_counter
|
@@ -23,6 +24,45 @@ from stable_diffusion_controlnet_inpaint_img2img import StableDiffusionControlNe
|
|
23 |
LOGGING = logging.getLogger(__name__)
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
@contextmanager
|
27 |
def catchtime(message: str) -> float:
|
28 |
"""Context manager to measure time
|
@@ -81,22 +121,8 @@ def get_controlnet() -> ControlNetModel:
|
|
81 |
Returns:
|
82 |
ControlNetModel: controlnet model
|
83 |
"""
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained(
|
88 |
-
"runwayml/stable-diffusion-inpainting",
|
89 |
-
controlnet=controlnet,
|
90 |
-
safety_checker=None,
|
91 |
-
torch_dtype=torch.float16
|
92 |
-
)
|
93 |
-
|
94 |
-
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
95 |
-
pipe.enable_xformers_memory_efficient_attention()
|
96 |
-
pipe = pipe.to("cuda")
|
97 |
-
|
98 |
-
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
|
99 |
-
return pipe, compel_proc
|
100 |
|
101 |
|
102 |
@st.experimental_singleton(max_entries=5)
|
@@ -126,9 +152,7 @@ def get_inpainting_pipeline() -> StableDiffusionInpaintPipeline:
|
|
126 |
pipe.enable_xformers_memory_efficient_attention()
|
127 |
pipe = pipe.to("cuda")
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
return pipe, compel_proc
|
132 |
|
133 |
|
134 |
def make_grid_parameters(grid_search: Dict, params: Dict) -> List[Dict]:
|
@@ -185,27 +209,18 @@ def make_image_controlnet(image: np.ndarray,
|
|
185 |
"""
|
186 |
|
187 |
with catchtime("get controlnet"):
|
188 |
-
pipe
|
189 |
|
190 |
torch.cuda.empty_cache()
|
191 |
images = []
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
'
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
}
|
201 |
-
else:
|
202 |
-
common_parameters = {'prompt': positive_prompt,
|
203 |
-
'negative_prompt': negative_prompt,
|
204 |
-
'num_inference_steps': 30,
|
205 |
-
'controlnet_conditioning_scale': 1.1,
|
206 |
-
'controlnet_conditioning_scale_decay': 0.96,
|
207 |
-
'controlnet_steps': 28,
|
208 |
-
}
|
209 |
|
210 |
grid_search = {'strength': [1.00, ],
|
211 |
'guidance_scale': [7.0],
|
@@ -253,18 +268,12 @@ def make_inpainting(positive_prompt: str,
|
|
253 |
"""
|
254 |
|
255 |
with catchtime("Get inpainting pipeline"):
|
256 |
-
pipe
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
}
|
263 |
-
else:
|
264 |
-
common_parameters = {'prompt': positive_prompt,
|
265 |
-
'negative_prompt': negative_prompt,
|
266 |
-
'num_inference_steps': 20,
|
267 |
-
}
|
268 |
|
269 |
torch.cuda.empty_cache()
|
270 |
images = []
|
|
|
4 |
|
5 |
import streamlit as st
|
6 |
import torch
|
7 |
+
import time
|
8 |
import numpy as np
|
9 |
from PIL import Image
|
10 |
from time import perf_counter
|
|
|
24 |
LOGGING = logging.getLogger(__name__)
|
25 |
|
26 |
|
27 |
+
class ControlNetPipeline:
|
28 |
+
def __init__(self):
|
29 |
+
self.in_use = False
|
30 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
31 |
+
"BertChristiaens/controlnet-seg-room", torch_dtype=torch.float16)
|
32 |
+
|
33 |
+
self.pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained(
|
34 |
+
"runwayml/stable-diffusion-inpainting",
|
35 |
+
controlnet=self.controlnet,
|
36 |
+
safety_checker=None,
|
37 |
+
torch_dtype=torch.float16
|
38 |
+
)
|
39 |
+
|
40 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
41 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
42 |
+
self.pipe = self.pipe.to("cuda")
|
43 |
+
|
44 |
+
self.waiting_queue = []
|
45 |
+
self.count = 0
|
46 |
+
|
47 |
+
def __call__(self, **kwargs):
|
48 |
+
self.count += 1
|
49 |
+
number = self.count
|
50 |
+
|
51 |
+
self.waiting_queue.append(number)
|
52 |
+
|
53 |
+
# wait until the next number in the queue is the current number
|
54 |
+
while self.waiting_queue[0] != number:
|
55 |
+
print(f"Wait for your turn {number} in queue {self.waiting_queue}")
|
56 |
+
time.sleep(0.5)
|
57 |
+
pass
|
58 |
+
|
59 |
+
# it's your turn, so remove the number from the queue
|
60 |
+
# and call the function
|
61 |
+
self.waiting_queue.pop(0)
|
62 |
+
print("It's the turn of", self.count)
|
63 |
+
return self.pipe(**kwargs)
|
64 |
+
|
65 |
+
|
66 |
@contextmanager
|
67 |
def catchtime(message: str) -> float:
|
68 |
"""Context manager to measure time
|
|
|
121 |
Returns:
|
122 |
ControlNetModel: controlnet model
|
123 |
"""
|
124 |
+
pipe = ControlNetPipeline()
|
125 |
+
return pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
|
128 |
@st.experimental_singleton(max_entries=5)
|
|
|
152 |
pipe.enable_xformers_memory_efficient_attention()
|
153 |
pipe = pipe.to("cuda")
|
154 |
|
155 |
+
return pipe
|
|
|
|
|
156 |
|
157 |
|
158 |
def make_grid_parameters(grid_search: Dict, params: Dict) -> List[Dict]:
|
|
|
209 |
"""
|
210 |
|
211 |
with catchtime("get controlnet"):
|
212 |
+
pipe = get_controlnet()
|
213 |
|
214 |
torch.cuda.empty_cache()
|
215 |
images = []
|
216 |
|
217 |
+
common_parameters = {'prompt': positive_prompt,
|
218 |
+
'negative_prompt': negative_prompt,
|
219 |
+
'num_inference_steps': 30,
|
220 |
+
'controlnet_conditioning_scale': 1.1,
|
221 |
+
'controlnet_conditioning_scale_decay': 0.96,
|
222 |
+
'controlnet_steps': 28,
|
223 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
grid_search = {'strength': [1.00, ],
|
226 |
'guidance_scale': [7.0],
|
|
|
268 |
"""
|
269 |
|
270 |
with catchtime("Get inpainting pipeline"):
|
271 |
+
pipe = get_inpainting_pipeline()
|
272 |
+
|
273 |
+
common_parameters = {'prompt': positive_prompt,
|
274 |
+
'negative_prompt': negative_prompt,
|
275 |
+
'num_inference_steps': 20,
|
276 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
torch.cuda.empty_cache()
|
279 |
images = []
|