Spaces:
Running
on
A10G
Running
on
A10G
BertChristiaens
commited on
Commit
·
07cf2eb
1
Parent(s):
a983caa
content
Browse files- .gitattributes +5 -0
- app.py +8 -1
- content/inpainting_after.png +3 -0
- content/inpainting_before.jpg +3 -0
- content/inpainting_sidebar.png +3 -0
- content/regen_example.png +3 -0
- explanation.py +30 -0
- image.png +0 -0
- test.py +0 -50
.gitattributes
CHANGED
@@ -32,3 +32,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
track filter=lfs diff=lfs merge=lfs -text
|
36 |
+
content/inpainting_after.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
content/inpainting_before.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
content/inpainting_sidebar.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
content/regen_example.png filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -12,7 +12,7 @@ from segmentation import segment_image
|
|
12 |
from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
|
13 |
from palette import COLOR_MAPPING_CATEGORY
|
14 |
from preprocessing import preprocess_seg_mask, get_image, get_mask
|
15 |
-
|
16 |
# wide layout
|
17 |
st.set_page_config(layout="wide")
|
18 |
|
@@ -276,6 +276,13 @@ def main():
|
|
276 |
|
277 |
_reset_state = check_reset_state()
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
col1, col2 = st.columns(2)
|
280 |
with col1:
|
281 |
make_editing_canvas(canvas_color=color_chooser,
|
|
|
12 |
from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
|
13 |
from palette import COLOR_MAPPING_CATEGORY
|
14 |
from preprocessing import preprocess_seg_mask, get_image, get_mask
|
15 |
+
from explanation import make_inpainting_explanation, make_regeneration_explanation, make_segmentation_explanation
|
16 |
# wide layout
|
17 |
st.set_page_config(layout="wide")
|
18 |
|
|
|
276 |
|
277 |
_reset_state = check_reset_state()
|
278 |
|
279 |
+
if generation_mode == "Inpainting":
|
280 |
+
make_inpainting_explanation()
|
281 |
+
elif generation_mode == "Segmentation conditioning":
|
282 |
+
make_segmentation_explanation()
|
283 |
+
elif generation_mode == "Re-generate objects":
|
284 |
+
make_regeneration_explanation()
|
285 |
+
|
286 |
col1, col2 = st.columns(2)
|
287 |
with col1:
|
288 |
make_editing_canvas(canvas_color=color_chooser,
|
content/inpainting_after.png
ADDED
Git LFS Details
|
content/inpainting_before.jpg
ADDED
Git LFS Details
|
content/inpainting_sidebar.png
ADDED
Git LFS Details
|
content/regen_example.png
ADDED
Git LFS Details
|
explanation.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
def make_inpainting_explanation():
|
4 |
+
with st.expander("Explanation inpainting", expanded=False):
|
5 |
+
st.write("In the inpainting mode, you can draw regions on the input image that you want to regenerate. "
|
6 |
+
"This can be useful to remove unwanted objects from the image or to improve the consistency of the image."
|
7 |
+
)
|
8 |
+
st.image("content/inpainting_sidebar.png", caption="Image before inpainting, note the ornaments on the wall", width=100)
|
9 |
+
st.write("You can find drawing options in the sidebar. There are two modes: freedraw and polygon. Freedraw allows the user to draw with a pencil of a certain width. "
|
10 |
+
"Polygon allows the user to draw a polygon by clicking on the image to add a point. The polygon is closed by right clicking.")
|
11 |
+
|
12 |
+
st.write("### Example inpainting")
|
13 |
+
st.write("In the example below, the ornaments on the wall are removed. The inpainting is done by drawing a mask on the image.")
|
14 |
+
st.image("content/inpainting_before.jpg", caption="Image before inpainting, note the ornaments on the wall", width=400)
|
15 |
+
st.image("content/inpainting_after.png", caption="Image before inpainting, note the ornaments on the wall", width=400)
|
16 |
+
|
17 |
+
def make_regeneration_explanation():
|
18 |
+
with st.expander("Explanation object regeneration"):
|
19 |
+
st.write("In this object regeneration mode, the model calculates which objects occur in the image. "
|
20 |
+
"The user can then select which objects can be regenerated by the controlnet model by adding them in the multiselect box. "
|
21 |
+
"All the object classes that are not selected will remain the same as in the original image."
|
22 |
+
)
|
23 |
+
st.write("### Example object regeneration")
|
24 |
+
st.write("In the example below, the room consists of various objects such as wall, ceiling, floor, lamp, bed, ... "
|
25 |
+
"In the multiselect box, all the objects except for 'lamp', 'bed and 'table' are selected to be regenerated. "
|
26 |
+
)
|
27 |
+
st.image("content/regen_example.png", caption="Room where all concepts except for 'bed', 'lamp', 'table' are regenerated", width=400)
|
28 |
+
|
29 |
+
def make_segmentation_explanation():
|
30 |
+
pass
|
image.png
DELETED
Binary file (684 kB)
|
|
test.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
class FondantInferenceModel:
|
4 |
-
"""FondantInferenceModel class that abstracts the model loading and inference.
|
5 |
-
User needs to implement an inference, pre/postprocess step and pass the class to the FondantInferenceComponent.
|
6 |
-
The FondantInferenceComponent will then load the model and prepare it for inference.
|
7 |
-
The examples folder can then show examples for a pytorch / huggingface / tensorflow / ... model.
|
8 |
-
"""
|
9 |
-
def __init__(self, device: str = "cpu"):
|
10 |
-
self.device = device
|
11 |
-
# load model
|
12 |
-
self.model = self.load_model()
|
13 |
-
# set model to eval mode
|
14 |
-
self.eval()
|
15 |
-
|
16 |
-
def load_model(self):
|
17 |
-
# load model
|
18 |
-
...
|
19 |
-
|
20 |
-
def eval(self):
|
21 |
-
# prepare for inference
|
22 |
-
self.model = self.model.eval()
|
23 |
-
self.model = self.model.to(self.device)
|
24 |
-
|
25 |
-
def preprocess(self, input):
|
26 |
-
# preprocess input
|
27 |
-
...
|
28 |
-
|
29 |
-
def postprocess(self, output):
|
30 |
-
# postprocess output
|
31 |
-
...
|
32 |
-
|
33 |
-
def __call__(self, *args, **kwargs):
|
34 |
-
processed_inputs = self.preprocess(*args, **kwargs)
|
35 |
-
outputs = self.model(*processed_inputs)
|
36 |
-
processed_outputs = self.postprocess(outputs)
|
37 |
-
return processed_outputs
|
38 |
-
|
39 |
-
|
40 |
-
class FondantInferenceComponent(FondantTransformComponent, FondantInferenceModel):
|
41 |
-
# loads the model and prepares it for inference
|
42 |
-
|
43 |
-
def transform(
|
44 |
-
self, args: argparse.Namespace, dataframe: dd.DataFrame
|
45 |
-
) -> dd.DataFrame:
|
46 |
-
# by using the InferenceComponent, the model is automatically loaded and prepared for inference
|
47 |
-
# you just need to call the infer method
|
48 |
-
# the self.infer method calls the model.__call__ method of the FondantInferenceModel
|
49 |
-
output = self.infer(args.image)
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|