Spaces:
Running
on
A10G
Running
on
A10G
import gc | |
import torch | |
from scipy.signal import fftconvolve | |
from PIL import Image | |
def flush(): | |
gc.collect() | |
torch.cuda.empty_cache() | |
def convolution(mask: Image.Image, size=9) -> Image: | |
"""Method to blur the mask | |
Args: | |
mask (Image): masking image | |
size (int, optional): size of the blur. Defaults to 9. | |
Returns: | |
Image: blurred mask | |
""" | |
mask = np.array(mask.convert("L")) | |
conv = np.ones((size, size)) / size**2 | |
mask_blended = fftconvolve(mask, conv, 'same') | |
mask_blended = mask_blended.astype(np.uint8).copy() | |
border = size | |
# replace borders with original values | |
mask_blended[:border, :] = mask[:border, :] | |
mask_blended[-border:, :] = mask[-border:, :] | |
mask_blended[:, :border] = mask[:, :border] | |
mask_blended[:, -border:] = mask[:, -border:] | |
return Image.fromarray(mask_blended).convert("L") | |
def postprocess_image_masking(inpainted: Image, image: Image, mask: Image) -> Image: | |
"""Method to postprocess the inpainted image | |
Args: | |
inpainted (Image): inpainted image | |
image (Image): original image | |
mask (Image): mask | |
Returns: | |
Image: inpainted image | |
""" | |
final_inpainted = Image.composite(inpainted.convert("RGBA"), image.convert("RGBA"), mask) | |
return final_inpainted.convert("RGB") | |