root commited on
Commit
9197037
·
1 Parent(s): 9ef9f0b

add compute script

Browse files
Files changed (1) hide show
  1. extract.py +89 -0
extract.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess
2
+ import re
3
+ import matplotlib.pyplot as plt
4
+ import datetime
5
+ import numpy as np
6
+ import statistics
7
+ import pdb
8
+ import csv
9
+
10
+ model = []
11
+ throughput = []
12
+ response_length = []
13
+ latency = []
14
+ energy = []
15
+
16
+ temp_throughput = []
17
+ temp_response_length = []
18
+ temp_latency = []
19
+ temp_energy = []
20
+
21
+ model1 = input("model 1: ")
22
+ model2 = input("model 2: ")
23
+ model3 = input("model 3: ")
24
+ model4 = input("model 4: ")
25
+
26
+ model_name = []
27
+ model_name.append(model1)
28
+ model_name.append(model2)
29
+ model_name.append(model3)
30
+ model_name.append(model4)
31
+
32
+ match_name = False
33
+
34
+ for i in range(len(model_name)):
35
+ with open(model_name[i], 'r') as file:
36
+ model_lines = file.readlines()
37
+
38
+ for i in range(len(model_lines)):
39
+ match = re.search(r'"model":\s*"([^"]+)"', model_lines[i])
40
+ match1 = re.search(r'"throughput":\s*(\d+.\d+)', model_lines[i])
41
+ match2 = re.search(r'"response_length":\s*([0-9]+)', model_lines[i])
42
+ match3 = re.search(r'"latency":\s*(\d+.\d+)', model_lines[i])
43
+ match4 = re.search(r'"energy":\s*(\d+.\d+)', model_lines[i])
44
+ if match and not match_name:
45
+ temp_model_name = str(match.group(1))
46
+ model.append(temp_model_name.replace('--', '/'))
47
+ match_name = True
48
+ elif match1:
49
+ temp_throughput.append(float(match1.group(1)))
50
+ elif match2:
51
+ temp_response_length.append(float(match2.group(1)))
52
+ elif match3:
53
+ temp_latency.append(float(match3.group(1)))
54
+ elif match4:
55
+ temp_energy.append(float(match4.group(1)))
56
+
57
+ match_name = False
58
+
59
+ throughput.append(temp_throughput.copy())
60
+ response_length.append(temp_response_length.copy())
61
+ latency.append(temp_latency.copy())
62
+ energy.append(temp_energy.copy())
63
+
64
+ temp_throughput.clear()
65
+ temp_response_length.clear()
66
+ temp_latency.clear()
67
+ temp_energy.clear()
68
+
69
+
70
+ avg_throughput = [sum(row) / len(row) for row in throughput]
71
+ avg_response_length = [sum(row) / len(row) for row in response_length]
72
+ avg_latency = [sum(row) / len(row) for row in latency]
73
+ avg_energy = [sum(row) / len(row) for row in energy]
74
+
75
+ for i in range(len(model)):
76
+ print(model[i])
77
+ print(len(throughput[i]))
78
+ print(len(response_length[i]))
79
+ print(len(latency[i]))
80
+ print(len(energy[i]))
81
+
82
+ csv_file = "leaderboard.csv"
83
+
84
+ with open(csv_file, "w", newline="") as file:
85
+ writer = csv.writer(file)
86
+ writer.writerow(["model","throughput","response_length","latency","energy"])
87
+ for i in range(len(model)):
88
+ writer.writerow([model[i], avg_throughput[i], avg_response_length[i], avg_latency[i], avg_energy[i]])
89
+