Spaces:
Running
Running
Jae-Won Chung
commited on
Commit
·
764dce6
1
Parent(s):
9f1c84b
Push `benchmark.py` from fix_stop_str
Browse files- scripts/benchmark.py +124 -138
scripts/benchmark.py
CHANGED
@@ -7,8 +7,8 @@ import json
|
|
7 |
import copy
|
8 |
import atexit
|
9 |
from typing import Generator, Literal, Iterable, Dict
|
|
|
10 |
|
11 |
-
import gc
|
12 |
import numpy as np
|
13 |
import tyro
|
14 |
import torch
|
@@ -16,6 +16,7 @@ import rich
|
|
16 |
from rich.table import Table
|
17 |
from fastchat.serve.inference import prepare_logits_processor
|
18 |
from fastchat.model.model_adapter import load_model, get_conversation_template
|
|
|
19 |
from zeus.monitor import ZeusMonitor
|
20 |
|
21 |
SYSTEM_PROMPTS = {
|
@@ -39,21 +40,20 @@ SYSTEM_PROMPTS = {
|
|
39 |
),
|
40 |
}
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
return False
|
48 |
|
49 |
@torch.inference_mode()
|
50 |
-
def
|
51 |
model,
|
52 |
tokenizer,
|
53 |
params: Dict,
|
54 |
device: str,
|
55 |
context_len: int = 2048,
|
56 |
-
):
|
57 |
# Read parameters
|
58 |
prompts = params["prompt"]
|
59 |
temperature = float(params.get("temperature", 1.0))
|
@@ -62,10 +62,16 @@ def generate_stream(
|
|
62 |
top_k = int(params.get("top_k", -1)) # -1 means disable
|
63 |
max_new_tokens = int(params.get("max_new_tokens", 256))
|
64 |
stop_str = params.get("stop", None)
|
65 |
-
stop_token_ids = params.get("stop_token_ids", None) or []
|
66 |
stop_token_ids.append(tokenizer.eos_token_id)
|
67 |
batch_size = len(prompts)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
# left append prompts with eos to make all input prompts the same length
|
70 |
tokenizer.padding_side = "left"
|
71 |
tokenizer.pad_token = tokenizer.eos_token
|
@@ -75,15 +81,14 @@ def generate_stream(
|
|
75 |
)
|
76 |
|
77 |
input_ids = tokenizer(prompts, padding=True).input_ids
|
78 |
-
output_ids =
|
79 |
|
80 |
if model.config.is_encoder_decoder:
|
81 |
max_src_len = context_len
|
82 |
else: # truncate
|
83 |
-
max_src_len = context_len - max_new_tokens -
|
84 |
|
85 |
input_ids = [input_id[-max_src_len:] for input_id in input_ids]
|
86 |
-
input_len = len(input_ids[0])
|
87 |
|
88 |
if model.config.is_encoder_decoder:
|
89 |
encoder_output = model.encoder(
|
@@ -141,10 +146,10 @@ def generate_stream(
|
|
141 |
else:
|
142 |
last_token_logits = logits[:, -1, :]
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
if temperature < 1e-5 or top_p < 1e-8: # greedy
|
149 |
_, indices = torch.topk(last_token_logits, 2)
|
150 |
tokens = [[int(token) for token in query] for query in indices.tolist()]
|
@@ -152,81 +157,70 @@ def generate_stream(
|
|
152 |
probs = torch.softmax(last_token_logits, dim=-1)
|
153 |
indices = torch.multinomial(probs, num_samples=2)
|
154 |
tokens = [[int(token) for token in query] for query in indices.tolist()]
|
|
|
|
|
155 |
|
|
|
156 |
old_stopped = stopped
|
157 |
stopped = np.logical_or(old_stopped, np.array([True if token[0] in stop_token_ids else False for token in tokens]))
|
158 |
-
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
182 |
find_stop = pos_array != -1
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
else:
|
194 |
-
raise ValueError("Invalid stop field type.")
|
195 |
-
|
196 |
-
# Prevent yielding partial stop sequence
|
197 |
-
if not any(partially_stopped):
|
198 |
-
# indicates which request in batch stopped
|
199 |
-
different_indices = np.where(stopped != old_stopped)[0]
|
200 |
-
stop_length = np.array([(j, i+1) for j in different_indices])
|
201 |
-
yield {
|
202 |
-
"text": output,
|
203 |
-
"stop_length": stop_length,
|
204 |
-
}
|
205 |
|
206 |
if all(stopped):
|
207 |
break
|
208 |
|
209 |
-
|
210 |
if any(stopped) == False:
|
211 |
-
tmp_output_ids = [ids[input_len:] for ids in output_ids]
|
212 |
output = tokenizer.batch_decode(
|
213 |
-
|
214 |
skip_special_tokens=True,
|
215 |
spaces_between_special_tokens=False,
|
216 |
clean_up_tokenization_spaces=True,
|
217 |
)
|
218 |
-
stop_length = np.array([(i, max_new_tokens) for i in false_indices])
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
}
|
224 |
|
225 |
-
|
226 |
-
del past_key_values, out
|
227 |
-
gc.collect()
|
228 |
-
torch.cuda.empty_cache()
|
229 |
|
|
|
|
|
|
|
230 |
|
231 |
def main(
|
232 |
model_path: str,
|
@@ -347,108 +341,100 @@ def main(
|
|
347 |
"temperature": temperature,
|
348 |
"repitition_penalty": repitition_penalty,
|
349 |
"max_new_tokens": max_new_tokens,
|
|
|
350 |
},
|
351 |
config_json,
|
352 |
indent=4,
|
353 |
)
|
354 |
config_json.write("\n")
|
355 |
|
356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
"""Yields a tuple of whether this is a warmup run and the input prompt."""
|
358 |
-
for _ in range(3
|
359 |
-
yield True, "Say something long and random. I don't care about the content."
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
|
|
363 |
|
364 |
# Warm up the GPU with some random prompts.
|
365 |
# Forward through all the prompts.
|
366 |
is_first = True
|
367 |
convs = []
|
368 |
prompts = []
|
369 |
-
data_iter = iter(dataloader(input_file))
|
370 |
-
|
371 |
-
|
372 |
-
while True:
|
373 |
-
try:
|
374 |
-
is_warmup, input_prompt = next(data_iter)
|
375 |
-
except StopIteration:
|
376 |
-
end_of_file = True # no more data
|
377 |
-
|
378 |
# Construct the input prompt.
|
379 |
-
|
380 |
conv = copy.deepcopy(conv_base)
|
381 |
-
conv.append_message(conv.roles[0],
|
382 |
conv.append_message(conv.roles[1], "")
|
383 |
prompt = conv.get_prompt()
|
384 |
prompts.append(prompt)
|
385 |
convs.append(conv)
|
386 |
-
|
387 |
gen_params["prompt"] = prompts
|
388 |
-
if end_of_file and len(prompts) == 0:
|
389 |
-
break
|
390 |
|
391 |
# Print input prompt.
|
392 |
for i in range(len(convs)):
|
393 |
console.print(f"\n[u cyan]{'Warmup ' if is_warmup else ''}Prompt[/u cyan](batch_{i}):")
|
394 |
console.print(prompts[i].strip() + "\n", markup=False)
|
395 |
|
396 |
-
# Generate the ouptut from the model.
|
397 |
-
output_stream = generate_stream(model, tokenizer, gen_params, device="cuda", context_len=2048)
|
398 |
-
output = {}
|
399 |
-
batch_token_len = {}
|
400 |
-
|
401 |
#################################################
|
402 |
# Inference and measurement zone!
|
403 |
#################################################
|
404 |
monitor.begin_window("inference")
|
405 |
-
|
406 |
-
stop_length = output["stop_length"]
|
407 |
-
for it in stop_length:
|
408 |
-
batch_token_len[it[0]] = it[1]
|
409 |
measurements = monitor.end_window("inference")
|
410 |
#################################################
|
411 |
-
|
412 |
-
|
413 |
-
output_text = output["text"]
|
414 |
-
if not is_warmup:
|
415 |
-
total_length = int(sum(batch_token_len.values())) # number of valid tokens
|
416 |
-
response_length = float(total_length) / len(convs)
|
417 |
-
latency = measurements.time
|
418 |
-
throughput = response_length / latency
|
419 |
-
energy = measurements.total_energy
|
420 |
-
output = {
|
421 |
-
"model": model_name_cleaned,
|
422 |
-
"batch": len(convs),
|
423 |
-
"throughput": throughput,
|
424 |
-
"response_length": response_length,
|
425 |
-
"latency": latency,
|
426 |
-
"energy": energy,
|
427 |
-
"input": [prompt.strip() for prompt in prompts],
|
428 |
-
"output": [output_text[i][:batch_token_len[i]].strip() for i in range(len(convs))],
|
429 |
-
}
|
430 |
-
output_str = json.dumps(output, indent=4)
|
431 |
if not is_warmup:
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
|
444 |
# Print measurement.
|
445 |
console.print(measurements)
|
446 |
convs = []
|
447 |
prompts = []
|
448 |
|
449 |
-
if end_of_file:
|
450 |
-
break
|
451 |
-
|
452 |
-
|
453 |
if __name__ == "__main__":
|
454 |
tyro.cli(main)
|
|
|
7 |
import copy
|
8 |
import atexit
|
9 |
from typing import Generator, Literal, Iterable, Dict
|
10 |
+
from dataclasses import dataclass
|
11 |
|
|
|
12 |
import numpy as np
|
13 |
import tyro
|
14 |
import torch
|
|
|
16 |
from rich.table import Table
|
17 |
from fastchat.serve.inference import prepare_logits_processor
|
18 |
from fastchat.model.model_adapter import load_model, get_conversation_template
|
19 |
+
from torch.utils.data import Dataset, DataLoader
|
20 |
from zeus.monitor import ZeusMonitor
|
21 |
|
22 |
SYSTEM_PROMPTS = {
|
|
|
40 |
),
|
41 |
}
|
42 |
|
43 |
+
@dataclass
|
44 |
+
class Output:
|
45 |
+
response_length: int
|
46 |
+
input: str
|
47 |
+
output: str
|
|
|
48 |
|
49 |
@torch.inference_mode()
|
50 |
+
def run_inference(
|
51 |
model,
|
52 |
tokenizer,
|
53 |
params: Dict,
|
54 |
device: str,
|
55 |
context_len: int = 2048,
|
56 |
+
) ->list[Output]:
|
57 |
# Read parameters
|
58 |
prompts = params["prompt"]
|
59 |
temperature = float(params.get("temperature", 1.0))
|
|
|
62 |
top_k = int(params.get("top_k", -1)) # -1 means disable
|
63 |
max_new_tokens = int(params.get("max_new_tokens", 256))
|
64 |
stop_str = params.get("stop", None)
|
65 |
+
stop_token_ids = list(params.get("stop_token_ids", None) or [])
|
66 |
stop_token_ids.append(tokenizer.eos_token_id)
|
67 |
batch_size = len(prompts)
|
68 |
|
69 |
+
empty_result = Output(response_length=-1, input="", output="")
|
70 |
+
result = []
|
71 |
+
for i, prompt in enumerate(prompts):
|
72 |
+
result.append(copy.deepcopy(empty_result))
|
73 |
+
result[i].input = prompt
|
74 |
+
|
75 |
# left append prompts with eos to make all input prompts the same length
|
76 |
tokenizer.padding_side = "left"
|
77 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
81 |
)
|
82 |
|
83 |
input_ids = tokenizer(prompts, padding=True).input_ids
|
84 |
+
output_ids = [[] for _ in range(batch_size)]
|
85 |
|
86 |
if model.config.is_encoder_decoder:
|
87 |
max_src_len = context_len
|
88 |
else: # truncate
|
89 |
+
max_src_len = context_len - max_new_tokens - 1
|
90 |
|
91 |
input_ids = [input_id[-max_src_len:] for input_id in input_ids]
|
|
|
92 |
|
93 |
if model.config.is_encoder_decoder:
|
94 |
encoder_output = model.encoder(
|
|
|
146 |
else:
|
147 |
last_token_logits = logits[:, -1, :]
|
148 |
|
149 |
+
# handle unexpected Nan issue for llama 2 7b chat
|
150 |
+
if torch.any(torch.isnan(last_token_logits)) == True:
|
151 |
+
return []
|
152 |
+
|
153 |
if temperature < 1e-5 or top_p < 1e-8: # greedy
|
154 |
_, indices = torch.topk(last_token_logits, 2)
|
155 |
tokens = [[int(token) for token in query] for query in indices.tolist()]
|
|
|
157 |
probs = torch.softmax(last_token_logits, dim=-1)
|
158 |
indices = torch.multinomial(probs, num_samples=2)
|
159 |
tokens = [[int(token) for token in query] for query in indices.tolist()]
|
160 |
+
|
161 |
+
output_ids = [ids + [token[0]] for ids, token in zip(output_ids, tokens)]
|
162 |
|
163 |
+
# deal with stop_token_ids
|
164 |
old_stopped = stopped
|
165 |
stopped = np.logical_or(old_stopped, np.array([True if token[0] in stop_token_ids else False for token in tokens]))
|
166 |
+
different_indices = np.where(stopped != old_stopped)[0]
|
167 |
|
168 |
+
rfind_start = 0
|
169 |
+
output = tokenizer.batch_decode(
|
170 |
+
output_ids,
|
171 |
+
skip_special_tokens=True,
|
172 |
+
spaces_between_special_tokens=False,
|
173 |
+
clean_up_tokenization_spaces=True,
|
174 |
+
)
|
175 |
+
output_np = np.array(output)
|
176 |
+
|
177 |
+
if different_indices.size > 0:
|
178 |
+
# here i but not i+1 is because the i+1 token generated is in stop_token_ids
|
179 |
+
for j in different_indices:
|
180 |
+
result[j].response_length = i
|
181 |
+
result[j].output = output[j]
|
182 |
+
|
183 |
+
# deal with stop_str
|
184 |
+
if stop_str:
|
185 |
+
if isinstance(stop_str, str):
|
186 |
+
pos_array = np.char.rfind(output_np, stop_str, rfind_start)
|
187 |
+
find_stop = pos_array != -1
|
188 |
+
elif isinstance(stop_str, Iterable):
|
189 |
+
for each_stop in stop_str:
|
190 |
+
pos_array = np.char.rfind(output_np, each_stop, rfind_start)
|
191 |
find_stop = pos_array != -1
|
192 |
+
else:
|
193 |
+
raise ValueError("Invalid stop field type.")
|
194 |
+
|
195 |
+
stop_str_indices = np.where(find_stop & ~stopped)[0]
|
196 |
+
if stop_str_indices.size > 0:
|
197 |
+
for j in stop_str_indices:
|
198 |
+
# TODO: find a elegant way to figure out the size of stop_str, here just suppose stop_str has one token
|
199 |
+
result[j].response_length = i
|
200 |
+
result[j].output = output[j][:pos_array[j]]
|
201 |
+
stopped[find_stop] = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
if all(stopped):
|
204 |
break
|
205 |
|
206 |
+
not_finish_indices = np.where(stopped == False)[0]
|
207 |
if any(stopped) == False:
|
|
|
208 |
output = tokenizer.batch_decode(
|
209 |
+
output_ids,
|
210 |
skip_special_tokens=True,
|
211 |
spaces_between_special_tokens=False,
|
212 |
clean_up_tokenization_spaces=True,
|
213 |
)
|
|
|
214 |
|
215 |
+
for j in not_finish_indices:
|
216 |
+
result[j].response_length = max_new_tokens
|
217 |
+
result[j].output = output[j]
|
|
|
218 |
|
219 |
+
return result
|
|
|
|
|
|
|
220 |
|
221 |
+
def write_error_to_file(filename, error_message):
|
222 |
+
with open(filename, 'a') as file:
|
223 |
+
file.write(error_message + '\n')
|
224 |
|
225 |
def main(
|
226 |
model_path: str,
|
|
|
341 |
"temperature": temperature,
|
342 |
"repitition_penalty": repitition_penalty,
|
343 |
"max_new_tokens": max_new_tokens,
|
344 |
+
"batch_size": batch,
|
345 |
},
|
346 |
config_json,
|
347 |
indent=4,
|
348 |
)
|
349 |
config_json.write("\n")
|
350 |
|
351 |
+
class CustomDataset(Dataset):
|
352 |
+
def __init__(self, data):
|
353 |
+
self.data = data
|
354 |
+
|
355 |
+
def __len__(self):
|
356 |
+
return len(self.data)
|
357 |
+
|
358 |
+
def __getitem__(self, index):
|
359 |
+
sample = self.data[index]
|
360 |
+
return sample["conversations"][0]["value"]
|
361 |
+
|
362 |
+
|
363 |
+
def dataloader(input_file: str, batch_size: batch) -> Generator[tuple[bool, str], None, None]:
|
364 |
"""Yields a tuple of whether this is a warmup run and the input prompt."""
|
365 |
+
for _ in range(3):
|
366 |
+
yield True, ["Say something long and random. I don't care about the content." for _ in range (batch)]
|
367 |
+
data = json.load(open(input_file, "r"))
|
368 |
+
custom_dataset = CustomDataset(data)
|
369 |
+
data_loader = DataLoader(custom_dataset, batch_size=batch_size, shuffle=False)
|
370 |
+
for prompt in data_loader:
|
371 |
+
yield False, prompt
|
372 |
|
373 |
# Warm up the GPU with some random prompts.
|
374 |
# Forward through all the prompts.
|
375 |
is_first = True
|
376 |
convs = []
|
377 |
prompts = []
|
378 |
+
data_iter = iter(dataloader(input_file, batch))
|
379 |
+
|
380 |
+
for is_warmup, input_prompts in data_iter:
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
# Construct the input prompt.
|
382 |
+
for i in range(batch):
|
383 |
conv = copy.deepcopy(conv_base)
|
384 |
+
conv.append_message(conv.roles[0], input_prompts[i])
|
385 |
conv.append_message(conv.roles[1], "")
|
386 |
prompt = conv.get_prompt()
|
387 |
prompts.append(prompt)
|
388 |
convs.append(conv)
|
389 |
+
|
390 |
gen_params["prompt"] = prompts
|
|
|
|
|
391 |
|
392 |
# Print input prompt.
|
393 |
for i in range(len(convs)):
|
394 |
console.print(f"\n[u cyan]{'Warmup ' if is_warmup else ''}Prompt[/u cyan](batch_{i}):")
|
395 |
console.print(prompts[i].strip() + "\n", markup=False)
|
396 |
|
|
|
|
|
|
|
|
|
|
|
397 |
#################################################
|
398 |
# Inference and measurement zone!
|
399 |
#################################################
|
400 |
monitor.begin_window("inference")
|
401 |
+
results = run_inference(model, tokenizer, gen_params, device="cuda", context_len=2048)
|
|
|
|
|
|
|
402 |
measurements = monitor.end_window("inference")
|
403 |
#################################################
|
404 |
+
if results:
|
405 |
+
# Record numbers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
if not is_warmup:
|
407 |
+
response_length = sum([result.response_length for result in results]) # number of valid tokens
|
408 |
+
latency = measurements.time
|
409 |
+
throughput = response_length / latency
|
410 |
+
energy = measurements.total_energy
|
411 |
+
output = {
|
412 |
+
"model": model_name_cleaned,
|
413 |
+
"throughput": throughput,
|
414 |
+
"response_length": response_length,
|
415 |
+
"latency": latency,
|
416 |
+
"energy": energy,
|
417 |
+
"input": [prompt.strip() for prompt in prompts],
|
418 |
+
"output": [(result.output).strip() for result in results],
|
419 |
+
}
|
420 |
+
output_str = json.dumps(output, indent=4)
|
421 |
+
if not is_warmup:
|
422 |
+
if not is_first:
|
423 |
+
output_json.write(",\n" + output_str)
|
424 |
+
else:
|
425 |
+
is_first = False
|
426 |
+
output_json.write(output_str)
|
427 |
+
output_json.flush()
|
428 |
+
|
429 |
+
# Print the response.
|
430 |
+
for i in range(len(convs)):
|
431 |
+
console.print(f"\n[u cyan]{'Warmup ' if is_warmup else ''}Response[/u cyan](batch_{i}):")
|
432 |
+
console.print(results[i].output.strip() + "\n", markup=False)
|
433 |
|
434 |
# Print measurement.
|
435 |
console.print(measurements)
|
436 |
convs = []
|
437 |
prompts = []
|
438 |
|
|
|
|
|
|
|
|
|
439 |
if __name__ == "__main__":
|
440 |
tyro.cli(main)
|