Spaces:
Running
Running
Jae-Won Chung
commited on
Commit
·
4e4fca8
1
Parent(s):
2eb5843
Detail and no-detail mode
Browse files- app.py +328 -145
- data/diffusion/image-to-video/models.json +6 -6
- data/diffusion/text-to-image/models.json +16 -16
- data/diffusion/text-to-video/models.json +4 -4
- data/llm_text_generation/chat/models.json +14 -14
- data/llm_text_generation/code/models.json +9 -9
- data/mllm_text_generation/chat/models.json +6 -6
app.py
CHANGED
@@ -6,7 +6,6 @@ where UI elements are actually defined.
|
|
6 |
|
7 |
from __future__ import annotations
|
8 |
|
9 |
-
from abc import abstractmethod
|
10 |
import copy
|
11 |
import json
|
12 |
import random
|
@@ -17,6 +16,7 @@ import contextlib
|
|
17 |
import argparse
|
18 |
import os
|
19 |
from pathlib import Path
|
|
|
20 |
from typing import Literal, Any
|
21 |
from dateutil import parser, tz
|
22 |
|
@@ -61,12 +61,12 @@ class TableManager:
|
|
61 |
"""Return the name of the leaderboard."""
|
62 |
|
63 |
@abstractmethod
|
64 |
-
def get_intro_text(self) ->
|
65 |
-
"""Return the
|
66 |
|
67 |
@abstractmethod
|
68 |
-
def get_detail_text(self) ->
|
69 |
-
"""Return the
|
70 |
|
71 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
72 |
"""Return data for the benchmark selection checkboxes."""
|
@@ -84,7 +84,7 @@ class TableManager:
|
|
84 |
"""Return all available models."""
|
85 |
|
86 |
@abstractmethod
|
87 |
-
def set_filter_get_df(self, *filters) -> pd.DataFrame:
|
88 |
"""Set the current set of filters and return the filtered DataFrame."""
|
89 |
|
90 |
|
@@ -127,7 +127,7 @@ class LLMTableManager(TableManager):
|
|
127 |
model_df[key] = val
|
128 |
# Format the model name as an HTML anchor.
|
129 |
model_df["Model"] = self._wrap_model_name(model_info["url"], model_info["nickname"])
|
130 |
-
model_df["Params"] = model_info["params"]
|
131 |
res_df = pd.concat([res_df, model_df])
|
132 |
|
133 |
if res_df.empty:
|
@@ -137,7 +137,7 @@ class LLMTableManager(TableManager):
|
|
137 |
|
138 |
# Order columns
|
139 |
columns = res_df.columns.to_list()
|
140 |
-
cols_to_order = ["Model", "Params"]
|
141 |
cols_to_order.extend(self.schema.keys())
|
142 |
columns = cols_to_order + [col for col in columns if col not in cols_to_order]
|
143 |
res_df = res_df[columns]
|
@@ -145,21 +145,21 @@ class LLMTableManager(TableManager):
|
|
145 |
# Order rows
|
146 |
res_df = res_df.sort_values(by=["Model", *self.schema.keys(), "Energy/req (J)"])
|
147 |
|
148 |
-
self.
|
149 |
|
150 |
# We need to set the default view separately when `gr.State` is forked.
|
151 |
-
self.set_filter_get_df()
|
152 |
|
153 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
154 |
return self.schema
|
155 |
|
156 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
157 |
-
return {"Target Time Per Output Token
|
158 |
|
159 |
def get_all_models(self) -> list[str]:
|
160 |
return self.full_df["Model"].apply(self._unwrap_model_name).unique().tolist()
|
161 |
|
162 |
-
def set_filter_get_df(self, *filters) -> pd.DataFrame:
|
163 |
"""Set the current set of filters and return the filtered DataFrame.
|
164 |
|
165 |
Filters can either be completely empty, or be a concatenated list of
|
@@ -175,15 +175,15 @@ class LLMTableManager(TableManager):
|
|
175 |
# Checkboxes
|
176 |
for setup, choice in zip(self.schema, filters):
|
177 |
index = index & self.full_df[setup].isin(choice)
|
178 |
-
|
179 |
|
180 |
# Sliders (We just have TPOT for now.)
|
181 |
# For each `Model`, we want to first filter out rows whose `Avg TPOT (s)` is greater than the slider value.
|
182 |
# Finally, only just leave the row whose `Energy/req (J)` is the smallest.
|
183 |
tpot_slo = filters[-1]
|
184 |
-
|
185 |
-
|
186 |
-
.groupby("Model")[
|
187 |
.apply(lambda x: x[x["Avg TPOT (s)"] <= tpot_slo], include_groups=True)
|
188 |
.sort_values(by="Energy/req (J)")
|
189 |
.reset_index(drop=True)
|
@@ -191,26 +191,16 @@ class LLMTableManager(TableManager):
|
|
191 |
.head(1)
|
192 |
)
|
193 |
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
-
|
197 |
-
text = """
|
198 |
-
Columns
|
199 |
-
- **Model**: The name of the model.
|
200 |
-
- **GPU**: Name of the GPU model used for benchmarking.
|
201 |
-
- **Params**: Number of parameters in the model.
|
202 |
-
- **TP**: Tensor parallelism degree.
|
203 |
-
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
|
204 |
-
- **Energy/req (J)**: Energy consumed per request in Joules.
|
205 |
-
- **Avg TPOT (s)**: Average time per output token in seconds.
|
206 |
-
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
|
207 |
-
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
|
208 |
-
- **Avg BS**: Average batch size of the serving engine over time.
|
209 |
-
- **Max BS**: Maximum batch size configuration of the serving engine.
|
210 |
-
|
211 |
-
For more detailed information, please take a look at the **About** tab.
|
212 |
-
"""
|
213 |
-
return "markdown", text
|
214 |
|
215 |
|
216 |
class LLMChatTableManager(LLMTableManager):
|
@@ -219,21 +209,59 @@ class LLMChatTableManager(LLMTableManager):
|
|
219 |
def get_tab_name(self) -> str:
|
220 |
return "LLM Chat"
|
221 |
|
222 |
-
def get_intro_text(self) ->
|
223 |
text = """
|
224 |
<h2>How much energy do GenAI models consume?</h2>
|
225 |
|
226 |
<h3>LLM chatbot response generation</h3>
|
227 |
|
228 |
<p style="font-size: 16px">
|
229 |
-
|
|
|
230 |
</p>
|
231 |
|
232 |
<p style="font-size: 16px">
|
233 |
-
|
234 |
</p>
|
235 |
"""
|
236 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
|
239 |
class LLMCodeTableManager(LLMTableManager):
|
@@ -242,21 +270,58 @@ class LLMCodeTableManager(LLMTableManager):
|
|
242 |
def get_tab_name(self) -> str:
|
243 |
return "LLM Code"
|
244 |
|
245 |
-
def get_intro_text(self) ->
|
246 |
text = """
|
247 |
<h2>How much energy do GenAI models consume?</h2>
|
248 |
|
249 |
<h3>LLM code generation</h3>
|
250 |
|
251 |
<p style="font-size: 16px">
|
252 |
-
|
|
|
253 |
</p>
|
254 |
|
255 |
<p style="font-size: 16px">
|
256 |
-
|
257 |
</p>
|
258 |
"""
|
259 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
|
262 |
class VLMChatTableManager(LLMTableManager):
|
@@ -265,21 +330,58 @@ class VLMChatTableManager(LLMTableManager):
|
|
265 |
def get_tab_name(self) -> str:
|
266 |
return "VLM Visual Chat"
|
267 |
|
268 |
-
def get_intro_text(self) ->
|
269 |
text = """
|
270 |
<h2>How much energy do GenAI models consume?</h2>
|
271 |
|
272 |
<h3>VLM visual chatbot response generation</h3>
|
273 |
|
274 |
<p style="font-size: 16px">
|
275 |
-
|
|
|
276 |
</p>
|
277 |
|
278 |
<p style="font-size: 16px">
|
279 |
-
|
280 |
</p>
|
281 |
"""
|
282 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
|
284 |
|
285 |
class DiffusionTableManager(TableManager):
|
@@ -301,8 +403,10 @@ class DiffusionTableManager(TableManager):
|
|
301 |
|
302 |
if "to video" in task_name.lower():
|
303 |
self.energy_col = "Energy/video (J)"
|
|
|
304 |
elif "to image" in task_name.lower():
|
305 |
self.energy_col = "Energy/image (J)"
|
|
|
306 |
else:
|
307 |
raise ValueError(f"Unknown task name: {task_name=}")
|
308 |
|
@@ -348,10 +452,10 @@ class DiffusionTableManager(TableManager):
|
|
348 |
# Order rows
|
349 |
res_df = res_df.sort_values(by=["Model", *self.schema.keys(), self.energy_col])
|
350 |
|
351 |
-
self.
|
352 |
|
353 |
# We need to set the default view separately when `gr.State` is forked.
|
354 |
-
self.set_filter_get_df()
|
355 |
|
356 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
357 |
return self.schema
|
@@ -359,7 +463,7 @@ class DiffusionTableManager(TableManager):
|
|
359 |
def get_all_models(self) -> list[str]:
|
360 |
return self.full_df["Model"].apply(self._unwrap_model_name).unique().tolist()
|
361 |
|
362 |
-
def set_filter_get_df(self, *filters) -> pd.DataFrame:
|
363 |
"""Set the current set of filters and return the filtered DataFrame.
|
364 |
|
365 |
Filters can either be completely empty, or be a concatenated list of
|
@@ -375,15 +479,15 @@ class DiffusionTableManager(TableManager):
|
|
375 |
# Checkboxes
|
376 |
for setup, choice in zip(self.schema, filters):
|
377 |
index = index & self.full_df[setup].isin(choice)
|
378 |
-
|
379 |
|
380 |
# Sliders (We just have Batch latency for now.)
|
381 |
# For each `Model`, we want to first filter out rows whose `Batch latency (s)` is greater than the slider value.
|
382 |
# Finally, only just leave the row whose `Energy/image (J)` or `Energy/video (J)` is the smallest.
|
383 |
batch_latency = filters[-1]
|
384 |
-
|
385 |
-
|
386 |
-
.groupby("Model")[
|
387 |
.apply(
|
388 |
lambda x: x[x["Batch latency (s)"] <= batch_latency],
|
389 |
include_groups=True,
|
@@ -394,7 +498,19 @@ class DiffusionTableManager(TableManager):
|
|
394 |
.head(1)
|
395 |
)
|
396 |
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
|
399 |
|
400 |
class DiffusionT2ITableManager(DiffusionTableManager):
|
@@ -403,36 +519,49 @@ class DiffusionT2ITableManager(DiffusionTableManager):
|
|
403 |
def get_tab_name(self) -> str:
|
404 |
return "Diffusion Text to image"
|
405 |
|
406 |
-
def get_intro_text(self) ->
|
407 |
text = """
|
408 |
<h2>Diffusion text-to-image generation</h2></br>
|
409 |
|
410 |
<p style="font-size: 16px">
|
411 |
-
|
|
|
412 |
</p>
|
413 |
|
414 |
<p style="font-size: 16px">
|
415 |
-
|
416 |
</p>
|
417 |
"""
|
418 |
-
return
|
419 |
-
|
420 |
-
def get_detail_text(self) ->
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
|
437 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
438 |
return {"Batch latency (s)": (0.0, 60.0, 1.0, 10.0)}
|
@@ -444,37 +573,50 @@ class DiffusionT2VTableManager(DiffusionTableManager):
|
|
444 |
def get_tab_name(self) -> str:
|
445 |
return "Diffusion Text to video"
|
446 |
|
447 |
-
def get_intro_text(self) ->
|
448 |
text = """
|
449 |
<h2>Diffusion text-to-video generation</h2></br>
|
450 |
|
451 |
<p style="font-size: 16px">
|
452 |
-
|
|
|
453 |
</p>
|
454 |
|
455 |
<p style="font-size: 16px">
|
456 |
-
|
457 |
</p>
|
458 |
"""
|
459 |
-
return
|
460 |
-
|
461 |
-
def get_detail_text(self) ->
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
|
479 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
480 |
return {"Batch latency (s)": (0.0, 60.0, 1.0, 10.0)}
|
@@ -486,37 +628,50 @@ class DiffusionI2VTableManager(DiffusionTableManager):
|
|
486 |
def get_tab_name(self) -> str:
|
487 |
return "Diffusion Image to video"
|
488 |
|
489 |
-
def get_intro_text(self) ->
|
490 |
text = """
|
491 |
<h2>Diffusion image-to-video generation</h2></br>
|
492 |
|
493 |
<p style="font-size: 16px">
|
494 |
-
|
|
|
495 |
</p>
|
496 |
|
497 |
<p style="font-size: 16px">
|
498 |
-
|
499 |
</p>
|
500 |
"""
|
501 |
-
return
|
502 |
-
|
503 |
-
def get_detail_text(self) ->
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
|
521 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
522 |
return {"Batch latency (s)": (0.0, 120.0, 1.0, 45.0)}
|
@@ -563,7 +718,7 @@ class LegacyTableManager:
|
|
563 |
self.full_df = df
|
564 |
|
565 |
# Default view of the table is to only show the first options.
|
566 |
-
self.set_filter_get_df()
|
567 |
|
568 |
def _read_tables(self, data_dir: str) -> pd.DataFrame:
|
569 |
"""Read tables."""
|
@@ -622,7 +777,7 @@ class LegacyTableManager:
|
|
622 |
gr.Dropdown.update(choices=["None", *columns]),
|
623 |
]
|
624 |
|
625 |
-
def set_filter_get_df(self, *filters) -> pd.DataFrame:
|
626 |
"""Set the current set of filters and return the filtered DataFrame."""
|
627 |
# If the filter is empty, we default to the first choice for each key.
|
628 |
if not filters:
|
@@ -639,7 +794,7 @@ class LegacyTableManager:
|
|
639 |
"""Return the leaderboard's introduction text in HTML."""
|
640 |
return """
|
641 |
<div align="center">
|
642 |
-
<h2 style="color: #23d175">This is the legacy ML.ENERGY LLM leaderboard. This will be removed
|
643 |
</div>
|
644 |
|
645 |
<h3>How much energy do modern Large Language Models (LLMs) consume for inference?</h3>
|
@@ -795,6 +950,12 @@ table th:first-child {
|
|
795 |
#citation-header > div > span {
|
796 |
font-size: 16px !important;
|
797 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
798 |
"""
|
799 |
|
800 |
# The app will not start without a controller address set.
|
@@ -866,8 +1027,8 @@ def consumed_more_energy_message(energy_a, energy_b):
|
|
866 |
# Colosseum event handlers
|
867 |
def on_load():
|
868 |
"""Intialize the dataframe, shuffle the model preference dropdown choices."""
|
869 |
-
dataframe = global_ltbm.set_filter_get_df()
|
870 |
-
dataframes = [global_tbm.set_filter_get_df() for global_tbm in global_tbms]
|
871 |
return dataframe, *dataframes
|
872 |
|
873 |
|
@@ -980,6 +1141,14 @@ def play_again():
|
|
980 |
]
|
981 |
|
982 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
983 |
focus_prompt_input_js = """
|
984 |
function() {
|
985 |
for (let textarea of document.getElementsByTagName("textarea")) {
|
@@ -994,6 +1163,7 @@ function() {
|
|
994 |
with gr.Blocks(css=custom_css) as block:
|
995 |
tbm = gr.State(global_ltbm) # type: ignore
|
996 |
local_tbms: list[TableManager] = [gr.State(global_tbm) for global_tbm in global_tbms] # type: ignore
|
|
|
997 |
|
998 |
with gr.Box():
|
999 |
gr.HTML(
|
@@ -1144,19 +1314,16 @@ with gr.Blocks(css=custom_css) as block:
|
|
1144 |
|
1145 |
# Tab: Leaderboards.
|
1146 |
dataframes = []
|
|
|
|
|
|
|
1147 |
for global_tbm, local_tbm in zip(global_tbms, local_tbms):
|
1148 |
with gr.Tab(global_tbm.get_tab_name()):
|
1149 |
# Box: Introduction text.
|
1150 |
with gr.Box():
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
1154 |
-
if intro_text_type == "markdown":
|
1155 |
-
gr.Markdown(intro_text)
|
1156 |
-
else:
|
1157 |
-
gr.HTML(intro_text)
|
1158 |
-
|
1159 |
-
# Block: Checkboxes and sliders to select benchmarking parameters.
|
1160 |
with gr.Row():
|
1161 |
checkboxes: list[gr.CheckboxGroup] = []
|
1162 |
for key, choices in global_tbm.get_benchmark_checkboxes().items():
|
@@ -1165,7 +1332,12 @@ with gr.Blocks(css=custom_css) as block:
|
|
1165 |
|
1166 |
sliders: list[gr.Slider] = []
|
1167 |
for key, (min_val, max_val, step, default) in global_tbm.get_benchmark_sliders().items():
|
1168 |
-
sliders.append(gr.Slider(minimum=min_val, maximum=max_val, value=default, step=step, label=key))
|
|
|
|
|
|
|
|
|
|
|
1169 |
|
1170 |
# Block: Leaderboard table.
|
1171 |
with gr.Row():
|
@@ -1173,6 +1345,7 @@ with gr.Blocks(css=custom_css) as block:
|
|
1173 |
type="pandas",
|
1174 |
elem_classes=["tab-leaderboard"],
|
1175 |
interactive=False,
|
|
|
1176 |
)
|
1177 |
dataframes.append(dataframe)
|
1178 |
|
@@ -1181,23 +1354,18 @@ with gr.Blocks(css=custom_css) as block:
|
|
1181 |
None, None, None, _js=dataframe_update_js, queue=False
|
1182 |
)
|
1183 |
# Table automatically updates when users check or uncheck any checkbox or move any slider.
|
1184 |
-
for element in [*checkboxes, *sliders]:
|
1185 |
element.change(
|
1186 |
global_tbm.__class__.set_filter_get_df,
|
1187 |
-
inputs=[local_tbm, *checkboxes, *sliders],
|
1188 |
outputs=dataframe,
|
1189 |
queue=False,
|
1190 |
)
|
1191 |
|
1192 |
# Block: More details about the leaderboard.
|
1193 |
with gr.Box():
|
1194 |
-
|
1195 |
-
|
1196 |
-
raise ValueError(f"Invalid text type '{detail_text_type}' from {local_tbm}")
|
1197 |
-
if detail_text_type == "markdown":
|
1198 |
-
gr.Markdown(detail_text)
|
1199 |
-
else:
|
1200 |
-
gr.HTML(detail_text)
|
1201 |
|
1202 |
# Block: Leaderboard date.
|
1203 |
with gr.Row():
|
@@ -1208,7 +1376,7 @@ with gr.Blocks(css=custom_css) as block:
|
|
1208 |
# Tab: Legacy leaderboard.
|
1209 |
with gr.Tab("LLM Leaderboard (legacy)"):
|
1210 |
with gr.Box():
|
1211 |
-
gr.
|
1212 |
|
1213 |
# Block: Checkboxes to select benchmarking parameters.
|
1214 |
with gr.Row():
|
@@ -1247,6 +1415,21 @@ with gr.Blocks(css=custom_css) as block:
|
|
1247 |
with gr.Tab("About"):
|
1248 |
gr.Markdown(open("docs/about.md").read())
|
1249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1250 |
# Citation
|
1251 |
with gr.Accordion("📚 Citation", open=False, elem_id="citation-header"):
|
1252 |
citation_text = open("docs/citation.bib").read()
|
|
|
6 |
|
7 |
from __future__ import annotations
|
8 |
|
|
|
9 |
import copy
|
10 |
import json
|
11 |
import random
|
|
|
16 |
import argparse
|
17 |
import os
|
18 |
from pathlib import Path
|
19 |
+
from abc import abstractmethod
|
20 |
from typing import Literal, Any
|
21 |
from dateutil import parser, tz
|
22 |
|
|
|
61 |
"""Return the name of the leaderboard."""
|
62 |
|
63 |
@abstractmethod
|
64 |
+
def get_intro_text(self) -> str:
|
65 |
+
"""Return the introduction text to be inserted above the table."""
|
66 |
|
67 |
@abstractmethod
|
68 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
69 |
+
"""Return the detail text chunk to be inserted below the table."""
|
70 |
|
71 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
72 |
"""Return data for the benchmark selection checkboxes."""
|
|
|
84 |
"""Return all available models."""
|
85 |
|
86 |
@abstractmethod
|
87 |
+
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
|
88 |
"""Set the current set of filters and return the filtered DataFrame."""
|
89 |
|
90 |
|
|
|
127 |
model_df[key] = val
|
128 |
# Format the model name as an HTML anchor.
|
129 |
model_df["Model"] = self._wrap_model_name(model_info["url"], model_info["nickname"])
|
130 |
+
model_df["Params (B)"] = model_info["params"]
|
131 |
res_df = pd.concat([res_df, model_df])
|
132 |
|
133 |
if res_df.empty:
|
|
|
137 |
|
138 |
# Order columns
|
139 |
columns = res_df.columns.to_list()
|
140 |
+
cols_to_order = ["Model", "Params (B)"]
|
141 |
cols_to_order.extend(self.schema.keys())
|
142 |
columns = cols_to_order + [col for col in columns if col not in cols_to_order]
|
143 |
res_df = res_df[columns]
|
|
|
145 |
# Order rows
|
146 |
res_df = res_df.sort_values(by=["Model", *self.schema.keys(), "Energy/req (J)"])
|
147 |
|
148 |
+
self.full_df = res_df.round(2)
|
149 |
|
150 |
# We need to set the default view separately when `gr.State` is forked.
|
151 |
+
self.set_filter_get_df(detail_mode=False)
|
152 |
|
153 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
154 |
return self.schema
|
155 |
|
156 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
157 |
+
return {"Target Average TPOT (Time Per Output Token) (s)": (0.0, 0.5, 0.01, 0.2)}
|
158 |
|
159 |
def get_all_models(self) -> list[str]:
|
160 |
return self.full_df["Model"].apply(self._unwrap_model_name).unique().tolist()
|
161 |
|
162 |
+
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
|
163 |
"""Set the current set of filters and return the filtered DataFrame.
|
164 |
|
165 |
Filters can either be completely empty, or be a concatenated list of
|
|
|
175 |
# Checkboxes
|
176 |
for setup, choice in zip(self.schema, filters):
|
177 |
index = index & self.full_df[setup].isin(choice)
|
178 |
+
cur_df = self.full_df.loc[index]
|
179 |
|
180 |
# Sliders (We just have TPOT for now.)
|
181 |
# For each `Model`, we want to first filter out rows whose `Avg TPOT (s)` is greater than the slider value.
|
182 |
# Finally, only just leave the row whose `Energy/req (J)` is the smallest.
|
183 |
tpot_slo = filters[-1]
|
184 |
+
cur_df = (
|
185 |
+
cur_df
|
186 |
+
.groupby("Model")[cur_df.columns]
|
187 |
.apply(lambda x: x[x["Avg TPOT (s)"] <= tpot_slo], include_groups=True)
|
188 |
.sort_values(by="Energy/req (J)")
|
189 |
.reset_index(drop=True)
|
|
|
191 |
.head(1)
|
192 |
)
|
193 |
|
194 |
+
if not detail_mode:
|
195 |
+
core_columns = ["Model", "Params (B)", "GPU", "Energy/req (J)"]
|
196 |
+
readable_name_mapping = {
|
197 |
+
"Params (B)": "Parameters (Billions)",
|
198 |
+
"GPU": "GPU model",
|
199 |
+
"Energy/req (J)": "Energy per response (Joules)",
|
200 |
+
}
|
201 |
+
cur_df = cur_df[core_columns].rename(columns=readable_name_mapping)
|
202 |
|
203 |
+
return cur_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
|
206 |
class LLMChatTableManager(LLMTableManager):
|
|
|
209 |
def get_tab_name(self) -> str:
|
210 |
return "LLM Chat"
|
211 |
|
212 |
+
def get_intro_text(self) -> str:
|
213 |
text = """
|
214 |
<h2>How much energy do GenAI models consume?</h2>
|
215 |
|
216 |
<h3>LLM chatbot response generation</h3>
|
217 |
|
218 |
<p style="font-size: 16px">
|
219 |
+
Large language models (LLMs), especially the instruction-tuned ones, can generate human-like responses to chat prompts.
|
220 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for LLM chat energy consumption.
|
221 |
</p>
|
222 |
|
223 |
<p style="font-size: 16px">
|
224 |
+
More models will be added over time. Stay tuned!
|
225 |
</p>
|
226 |
"""
|
227 |
+
return text
|
228 |
+
|
229 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
230 |
+
if detail_mode:
|
231 |
+
text = """
|
232 |
+
Columns
|
233 |
+
- **Model**: The name of the model.
|
234 |
+
- **Params (B)**: Number of parameters in the model.
|
235 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
236 |
+
- **TP**: Tensor parallelism degree.
|
237 |
+
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
|
238 |
+
- **Energy/req (J)**: Energy consumed per request in Joules.
|
239 |
+
- **Avg TPOT (s)**: Average time per output token in seconds.
|
240 |
+
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
|
241 |
+
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
|
242 |
+
- **Avg BS**: Average batch size of the serving engine over time.
|
243 |
+
- **Max BS**: Maximum batch size configuration of the serving engine.
|
244 |
+
|
245 |
+
**TPOT (Time Per Output Token)** is the time between each token generated by LLMs as part of their response.
|
246 |
+
An average TPOT of 0.20 seconds roughly corresponds to a person reading at 240 words per minute and assuming one word is 1.3 tokens on average.
|
247 |
+
You can tweak the TPOT slider to adjust the target average TPOT for the models.
|
248 |
+
|
249 |
+
For more detailed information, please take a look at the **About** tab.
|
250 |
+
"""
|
251 |
+
else:
|
252 |
+
text = """
|
253 |
+
Columns
|
254 |
+
- **Model**: The name of the model.
|
255 |
+
- **Parameters (Billions)**: Number of parameters in the model. This is the size of the model.
|
256 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
257 |
+
- **Energy per response (Joules)**: Energy consumed for each LLM response in Joules.
|
258 |
+
|
259 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
260 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
261 |
+
"""
|
262 |
+
|
263 |
+
return text
|
264 |
+
|
265 |
|
266 |
|
267 |
class LLMCodeTableManager(LLMTableManager):
|
|
|
270 |
def get_tab_name(self) -> str:
|
271 |
return "LLM Code"
|
272 |
|
273 |
+
def get_intro_text(self) -> str:
|
274 |
text = """
|
275 |
<h2>How much energy do GenAI models consume?</h2>
|
276 |
|
277 |
<h3>LLM code generation</h3>
|
278 |
|
279 |
<p style="font-size: 16px">
|
280 |
+
Large language models (LLMs) are also capable of generating code.
|
281 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of LLMs specifically trained for code generation.
|
282 |
</p>
|
283 |
|
284 |
<p style="font-size: 16px">
|
285 |
+
More models will be added over time. Stay tuned!
|
286 |
</p>
|
287 |
"""
|
288 |
+
return text
|
289 |
+
|
290 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
291 |
+
if detail_mode:
|
292 |
+
text = """
|
293 |
+
Columns
|
294 |
+
- **Model**: The name of the model.
|
295 |
+
- **Params (B)**: Number of parameters in the model.
|
296 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
297 |
+
- **TP**: Tensor parallelism degree.
|
298 |
+
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
|
299 |
+
- **Energy/req (J)**: Energy consumed per request in Joules.
|
300 |
+
- **Avg TPOT (s)**: Average time per output token in seconds.
|
301 |
+
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
|
302 |
+
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
|
303 |
+
- **Avg BS**: Average batch size of the serving engine over time.
|
304 |
+
- **Max BS**: Maximum batch size configuration of the serving engine.
|
305 |
+
|
306 |
+
**TPOT (Time Per Output Token)** is the time between each token generated by LLMs as part of their response.
|
307 |
+
An average TPOT of 0.20 seconds roughly corresponds to a person reading at 240 words per minute and assuming one word is 1.3 tokens on average.
|
308 |
+
You can tweak the TPOT slider to adjust the target average TPOT for the models.
|
309 |
+
|
310 |
+
For more detailed information, please take a look at the **About** tab.
|
311 |
+
"""
|
312 |
+
else:
|
313 |
+
text = """
|
314 |
+
Columns
|
315 |
+
- **Model**: The name of the model.
|
316 |
+
- **Parameters (Billions)**: Number of parameters in the model. This is the size of the model.
|
317 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
318 |
+
- **Energy per response (Joules)**: Energy consumed for each LLM response in Joules.
|
319 |
+
|
320 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
321 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
322 |
+
"""
|
323 |
+
|
324 |
+
return text
|
325 |
|
326 |
|
327 |
class VLMChatTableManager(LLMTableManager):
|
|
|
330 |
def get_tab_name(self) -> str:
|
331 |
return "VLM Visual Chat"
|
332 |
|
333 |
+
def get_intro_text(self) -> str:
|
334 |
text = """
|
335 |
<h2>How much energy do GenAI models consume?</h2>
|
336 |
|
337 |
<h3>VLM visual chatbot response generation</h3>
|
338 |
|
339 |
<p style="font-size: 16px">
|
340 |
+
Vision language models (VLMs) are large language models that can understand images along with text and generate human-like responses to chat prompts with images.
|
341 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for VLM chat energy consumption.
|
342 |
</p>
|
343 |
|
344 |
<p style="font-size: 16px">
|
345 |
+
More models will be added over time. Stay tuned!
|
346 |
</p>
|
347 |
"""
|
348 |
+
return text
|
349 |
+
|
350 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
351 |
+
if detail_mode:
|
352 |
+
text = """
|
353 |
+
Columns
|
354 |
+
- **Model**: The name of the model.
|
355 |
+
- **Params (B)**: Number of parameters in the model.
|
356 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
357 |
+
- **TP**: Tensor parallelism degree.
|
358 |
+
- **PP**: Pipeline parallelism degree. (TP * PP is the total number of GPUs used.)
|
359 |
+
- **Energy/req (J)**: Energy consumed per request in Joules.
|
360 |
+
- **Avg TPOT (s)**: Average time per output token in seconds.
|
361 |
+
- **Token tput (toks/s)**: Average number of tokens generated by the engine per second.
|
362 |
+
- **Avg Output Tokens**: Average number of output tokens in the LLM's response.
|
363 |
+
- **Avg BS**: Average batch size of the serving engine over time.
|
364 |
+
- **Max BS**: Maximum batch size configuration of the serving engine.
|
365 |
+
|
366 |
+
**TPOT (Time Per Output Token)** is the time between each token generated by LLMs as part of their response.
|
367 |
+
An average TPOT of 0.20 seconds roughly corresponds to a person reading at 240 words per minute and assuming one word is 1.3 tokens on average.
|
368 |
+
You can tweak the TPOT slider to adjust the target average TPOT for the models.
|
369 |
+
|
370 |
+
For more detailed information, please take a look at the **About** tab.
|
371 |
+
"""
|
372 |
+
else:
|
373 |
+
text = """
|
374 |
+
Columns
|
375 |
+
- **Model**: The name of the model.
|
376 |
+
- **Parameters (Billions)**: Number of parameters in the model. This is the size of the model.
|
377 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
378 |
+
- **Energy per response (Joules)**: Energy consumed for each LLM response in Joules.
|
379 |
+
|
380 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
381 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
382 |
+
"""
|
383 |
+
|
384 |
+
return text
|
385 |
|
386 |
|
387 |
class DiffusionTableManager(TableManager):
|
|
|
403 |
|
404 |
if "to video" in task_name.lower():
|
405 |
self.energy_col = "Energy/video (J)"
|
406 |
+
self.energy_col_readable = "Energy per video (Joules)"
|
407 |
elif "to image" in task_name.lower():
|
408 |
self.energy_col = "Energy/image (J)"
|
409 |
+
self.energy_col_readable = "Energy per image (Joules)"
|
410 |
else:
|
411 |
raise ValueError(f"Unknown task name: {task_name=}")
|
412 |
|
|
|
452 |
# Order rows
|
453 |
res_df = res_df.sort_values(by=["Model", *self.schema.keys(), self.energy_col])
|
454 |
|
455 |
+
self.full_df = res_df.round(2)
|
456 |
|
457 |
# We need to set the default view separately when `gr.State` is forked.
|
458 |
+
self.set_filter_get_df(detail_mode=False)
|
459 |
|
460 |
def get_benchmark_checkboxes(self) -> dict[str, list[str]]:
|
461 |
return self.schema
|
|
|
463 |
def get_all_models(self) -> list[str]:
|
464 |
return self.full_df["Model"].apply(self._unwrap_model_name).unique().tolist()
|
465 |
|
466 |
+
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
|
467 |
"""Set the current set of filters and return the filtered DataFrame.
|
468 |
|
469 |
Filters can either be completely empty, or be a concatenated list of
|
|
|
479 |
# Checkboxes
|
480 |
for setup, choice in zip(self.schema, filters):
|
481 |
index = index & self.full_df[setup].isin(choice)
|
482 |
+
cur_df = self.full_df.loc[index]
|
483 |
|
484 |
# Sliders (We just have Batch latency for now.)
|
485 |
# For each `Model`, we want to first filter out rows whose `Batch latency (s)` is greater than the slider value.
|
486 |
# Finally, only just leave the row whose `Energy/image (J)` or `Energy/video (J)` is the smallest.
|
487 |
batch_latency = filters[-1]
|
488 |
+
cur_df = (
|
489 |
+
cur_df
|
490 |
+
.groupby("Model")[cur_df.columns]
|
491 |
.apply(
|
492 |
lambda x: x[x["Batch latency (s)"] <= batch_latency],
|
493 |
include_groups=True,
|
|
|
498 |
.head(1)
|
499 |
)
|
500 |
|
501 |
+
if not detail_mode:
|
502 |
+
core_columns = ["Model", "Denoising params", "GPU", "Denoising steps", "Resolution", "Frames", self.energy_col]
|
503 |
+
readable_name_mapping = {
|
504 |
+
"Denoising params": "Denoising parameters (Billions)",
|
505 |
+
"GPU": "GPU model",
|
506 |
+
self.energy_col: self.energy_col_readable,
|
507 |
+
}
|
508 |
+
for column in cur_df.columns:
|
509 |
+
if column not in core_columns:
|
510 |
+
cur_df = cur_df.drop(column, axis=1)
|
511 |
+
cur_df = cur_df.rename(columns=readable_name_mapping)
|
512 |
+
|
513 |
+
return cur_df
|
514 |
|
515 |
|
516 |
class DiffusionT2ITableManager(DiffusionTableManager):
|
|
|
519 |
def get_tab_name(self) -> str:
|
520 |
return "Diffusion Text to image"
|
521 |
|
522 |
+
def get_intro_text(self) -> str:
|
523 |
text = """
|
524 |
<h2>Diffusion text-to-image generation</h2></br>
|
525 |
|
526 |
<p style="font-size: 16px">
|
527 |
+
Diffusion models generate images that align with input text prompts.
|
528 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of Diffusion text-to-image.
|
529 |
</p>
|
530 |
|
531 |
<p style="font-size: 16px">
|
532 |
+
More models will be added over time. Stay tuned!
|
533 |
</p>
|
534 |
"""
|
535 |
+
return text
|
536 |
+
|
537 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
538 |
+
if detail_mode:
|
539 |
+
text = """
|
540 |
+
Columns
|
541 |
+
- **Model**: The name of the model.
|
542 |
+
- **Denoising params**: Number of parameters in the denosing module (e.g., UNet, Transformer).
|
543 |
+
- **Total params**: Total number of parameters in the model, including encoders and decoders.
|
544 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
545 |
+
- **Energy/image (J)**: Energy consumed per generated image in Joules.
|
546 |
+
- **Batch latency (s)**: Time taken to generate a batch of images in seconds.
|
547 |
+
- **Batch size**: Number of prompts/images in a batch.
|
548 |
+
- **Denoising steps**: Number of denoising steps used for the diffusion model.
|
549 |
+
- **Resolution**: Resolution of the generated image.
|
550 |
+
|
551 |
+
For more detailed information, please take a look at the **About** tab.
|
552 |
+
"""
|
553 |
+
else:
|
554 |
+
text = """
|
555 |
+
Columns
|
556 |
+
- **Model**: The name of the model.
|
557 |
+
- **Denoising parameters (Billions)**: Number of parameters in the diffusion model's (core) denoising module. This part of the model is run repetitively to generate gradually refine the image.
|
558 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
559 |
+
- **Energy per image (Joules)**: Energy consumed for each generated image in Joules.
|
560 |
+
|
561 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
562 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
563 |
+
"""
|
564 |
+
return text
|
565 |
|
566 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
567 |
return {"Batch latency (s)": (0.0, 60.0, 1.0, 10.0)}
|
|
|
573 |
def get_tab_name(self) -> str:
|
574 |
return "Diffusion Text to video"
|
575 |
|
576 |
+
def get_intro_text(self) -> str:
|
577 |
text = """
|
578 |
<h2>Diffusion text-to-video generation</h2></br>
|
579 |
|
580 |
<p style="font-size: 16px">
|
581 |
+
Diffusion models generate videos that align with input text prompts.
|
582 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of Diffusion text-to-video.
|
583 |
</p>
|
584 |
|
585 |
<p style="font-size: 16px">
|
586 |
+
More models will be added over time. Stay tuned!
|
587 |
</p>
|
588 |
"""
|
589 |
+
return text
|
590 |
+
|
591 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
592 |
+
if detail_mode:
|
593 |
+
text = """
|
594 |
+
Columns
|
595 |
+
- **Model**: The name of the model.
|
596 |
+
- **Denoising params**: Number of parameters in the denosing module (e.g., UNet, Transformer).
|
597 |
+
- **Total params**: Total number of parameters in the model, including encoders and decoders.
|
598 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
599 |
+
- **Energy/video (J)**: Energy consumed per generated video in Joules.
|
600 |
+
- **Batch latency (s)**: Time taken to generate a batch of videos in seconds.
|
601 |
+
- **Batch size**: Number of prompts/videos in a batch.
|
602 |
+
- **Denoising steps**: Number of denoising steps used for the diffusion model.
|
603 |
+
- **Frames**: Number of frames in the generated video.
|
604 |
+
- **Resolution**: Resolution of the generated video.
|
605 |
+
|
606 |
+
For more detailed information, please take a look at the **About** tab.
|
607 |
+
"""
|
608 |
+
else:
|
609 |
+
text = """
|
610 |
+
Columns
|
611 |
+
- **Model**: The name of the model.
|
612 |
+
- **Denoising parameters (Billions)**: Number of parameters in the diffusion model's (core) denoising module. This part of the model is run repetitively to generate gradually refine the video.
|
613 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
614 |
+
- **Energy per video (Joules)**: Energy consumed for each generated image in Joules.
|
615 |
+
|
616 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
617 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
618 |
+
"""
|
619 |
+
return text
|
620 |
|
621 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
622 |
return {"Batch latency (s)": (0.0, 60.0, 1.0, 10.0)}
|
|
|
628 |
def get_tab_name(self) -> str:
|
629 |
return "Diffusion Image to video"
|
630 |
|
631 |
+
def get_intro_text(self) -> str:
|
632 |
text = """
|
633 |
<h2>Diffusion image-to-video generation</h2></br>
|
634 |
|
635 |
<p style="font-size: 16px">
|
636 |
+
Diffusion models generate videos given an input image (and sometimes alongside with text).
|
637 |
+
Using <a href="https://ml.energy/zeus">Zeus</a> for energy measurement, we created a leaderboard for the energy consumption of Diffusion image-to-video.
|
638 |
</p>
|
639 |
|
640 |
<p style="font-size: 16px">
|
641 |
+
More models will be added over time. Stay tuned!
|
642 |
</p>
|
643 |
"""
|
644 |
+
return text
|
645 |
+
|
646 |
+
def get_detail_text(self, detail_mode: bool) -> str:
|
647 |
+
if detail_mode:
|
648 |
+
text = """
|
649 |
+
Columns
|
650 |
+
- **Model**: The name of the model.
|
651 |
+
- **Denoising params**: Number of parameters in the denosing module (e.g., UNet, Transformer).
|
652 |
+
- **Total params**: Total number of parameters in the model, including encoders and decoders.
|
653 |
+
- **GPU**: Name of the GPU model used for benchmarking.
|
654 |
+
- **Energy/video (J)**: Energy consumed per generated video in Joules.
|
655 |
+
- **Batch latency (s)**: Time taken to generate a batch of videos in seconds.
|
656 |
+
- **Batch size**: Number of prompts/videos in a batch.
|
657 |
+
- **Denoising steps**: Number of denoising steps used for the diffusion model.
|
658 |
+
- **Frames**: Number of frames in the generated video.
|
659 |
+
- **Resolution**: Resolution of the generated video.
|
660 |
+
|
661 |
+
For more detailed information, please take a look at the **About** tab.
|
662 |
+
"""
|
663 |
+
else:
|
664 |
+
text = """
|
665 |
+
Columns
|
666 |
+
- **Model**: The name of the model.
|
667 |
+
- **Denoising parameters (Billions)**: Number of parameters in the diffusion model's (core) denoising module. This part of the model is run repetitively to generate gradually refine the video.
|
668 |
+
- **GPU model**: Name of the GPU model used for benchmarking.
|
669 |
+
- **Energy per video (Joules)**: Energy consumed for each generated image in Joules.
|
670 |
+
|
671 |
+
Checking "Show more technical details" above the table will reveal more detailed columns.
|
672 |
+
Also, for more detailed information, please take a look at the **About** tab.
|
673 |
+
"""
|
674 |
+
return text
|
675 |
|
676 |
def get_benchmark_sliders(self) -> dict[str, tuple[float, float, float, float]]:
|
677 |
return {"Batch latency (s)": (0.0, 120.0, 1.0, 45.0)}
|
|
|
718 |
self.full_df = df
|
719 |
|
720 |
# Default view of the table is to only show the first options.
|
721 |
+
self.set_filter_get_df(detail_mode=False)
|
722 |
|
723 |
def _read_tables(self, data_dir: str) -> pd.DataFrame:
|
724 |
"""Read tables."""
|
|
|
777 |
gr.Dropdown.update(choices=["None", *columns]),
|
778 |
]
|
779 |
|
780 |
+
def set_filter_get_df(self, detail_mode: bool, *filters) -> pd.DataFrame:
|
781 |
"""Set the current set of filters and return the filtered DataFrame."""
|
782 |
# If the filter is empty, we default to the first choice for each key.
|
783 |
if not filters:
|
|
|
794 |
"""Return the leaderboard's introduction text in HTML."""
|
795 |
return """
|
796 |
<div align="center">
|
797 |
+
<h2 style="color: #23d175">This is the legacy ML.ENERGY LLM leaderboard. This will be removed at the end of this year.</h2>
|
798 |
</div>
|
799 |
|
800 |
<h3>How much energy do modern Large Language Models (LLMs) consume for inference?</h3>
|
|
|
950 |
#citation-header > div > span {
|
951 |
font-size: 16px !important;
|
952 |
}
|
953 |
+
|
954 |
+
/* Align everything in tables to the right. */
|
955 |
+
/* Not the best solution, but at least makes the numbers align. */
|
956 |
+
.tab-leaderboard span {
|
957 |
+
text-align: right;
|
958 |
+
}
|
959 |
"""
|
960 |
|
961 |
# The app will not start without a controller address set.
|
|
|
1027 |
# Colosseum event handlers
|
1028 |
def on_load():
|
1029 |
"""Intialize the dataframe, shuffle the model preference dropdown choices."""
|
1030 |
+
dataframe = global_ltbm.set_filter_get_df(detail_mode=False)
|
1031 |
+
dataframes = [global_tbm.set_filter_get_df(detail_mode=False) for global_tbm in global_tbms]
|
1032 |
return dataframe, *dataframes
|
1033 |
|
1034 |
|
|
|
1141 |
]
|
1142 |
|
1143 |
|
1144 |
+
def toggle_detail_mode_slider_visibility(detail_mode: bool, *sliders):
|
1145 |
+
return [detail_mode] + [gr.update(visible=detail_mode)] * len(sliders)
|
1146 |
+
|
1147 |
+
|
1148 |
+
def toggle_detail_mode_sync_tabs(detail_mode: bool, *checkboxes):
|
1149 |
+
return [gr.Checkbox.update(value=detail_mode)] * len(checkboxes) + [gr.Markdown.update(tbm.get_detail_text(detail_mode)) for tbm in global_tbms]
|
1150 |
+
|
1151 |
+
|
1152 |
focus_prompt_input_js = """
|
1153 |
function() {
|
1154 |
for (let textarea of document.getElementsByTagName("textarea")) {
|
|
|
1163 |
with gr.Blocks(css=custom_css) as block:
|
1164 |
tbm = gr.State(global_ltbm) # type: ignore
|
1165 |
local_tbms: list[TableManager] = [gr.State(global_tbm) for global_tbm in global_tbms] # type: ignore
|
1166 |
+
detail_mode = gr.State(False) # type: ignore
|
1167 |
|
1168 |
with gr.Box():
|
1169 |
gr.HTML(
|
|
|
1314 |
|
1315 |
# Tab: Leaderboards.
|
1316 |
dataframes = []
|
1317 |
+
all_detail_mode_checkboxes = []
|
1318 |
+
all_sliders = []
|
1319 |
+
all_detail_text_components = []
|
1320 |
for global_tbm, local_tbm in zip(global_tbms, local_tbms):
|
1321 |
with gr.Tab(global_tbm.get_tab_name()):
|
1322 |
# Box: Introduction text.
|
1323 |
with gr.Box():
|
1324 |
+
gr.Markdown(global_tbm.get_intro_text())
|
1325 |
+
|
1326 |
+
# Block: Checkboxes and sliders to select benchmarking parameters. A detail mode checkbox.
|
|
|
|
|
|
|
|
|
|
|
|
|
1327 |
with gr.Row():
|
1328 |
checkboxes: list[gr.CheckboxGroup] = []
|
1329 |
for key, choices in global_tbm.get_benchmark_checkboxes().items():
|
|
|
1332 |
|
1333 |
sliders: list[gr.Slider] = []
|
1334 |
for key, (min_val, max_val, step, default) in global_tbm.get_benchmark_sliders().items():
|
1335 |
+
sliders.append(gr.Slider(minimum=min_val, maximum=max_val, value=default, step=step, label=key, visible=detail_mode.value))
|
1336 |
+
all_sliders.extend(sliders)
|
1337 |
+
|
1338 |
+
with gr.Row():
|
1339 |
+
detail_mode_checkbox = gr.Checkbox(label="Show more technical details", value=False)
|
1340 |
+
all_detail_mode_checkboxes.append(detail_mode_checkbox)
|
1341 |
|
1342 |
# Block: Leaderboard table.
|
1343 |
with gr.Row():
|
|
|
1345 |
type="pandas",
|
1346 |
elem_classes=["tab-leaderboard"],
|
1347 |
interactive=False,
|
1348 |
+
max_rows=1000,
|
1349 |
)
|
1350 |
dataframes.append(dataframe)
|
1351 |
|
|
|
1354 |
None, None, None, _js=dataframe_update_js, queue=False
|
1355 |
)
|
1356 |
# Table automatically updates when users check or uncheck any checkbox or move any slider.
|
1357 |
+
for element in [detail_mode_checkbox, *checkboxes, *sliders]:
|
1358 |
element.change(
|
1359 |
global_tbm.__class__.set_filter_get_df,
|
1360 |
+
inputs=[local_tbm, detail_mode, *checkboxes, *sliders],
|
1361 |
outputs=dataframe,
|
1362 |
queue=False,
|
1363 |
)
|
1364 |
|
1365 |
# Block: More details about the leaderboard.
|
1366 |
with gr.Box():
|
1367 |
+
detail_text = global_tbm.get_detail_text(detail_mode=False)
|
1368 |
+
all_detail_text_components.append(gr.Markdown(detail_text))
|
|
|
|
|
|
|
|
|
|
|
1369 |
|
1370 |
# Block: Leaderboard date.
|
1371 |
with gr.Row():
|
|
|
1376 |
# Tab: Legacy leaderboard.
|
1377 |
with gr.Tab("LLM Leaderboard (legacy)"):
|
1378 |
with gr.Box():
|
1379 |
+
gr.Markdown(global_ltbm.get_intro_text())
|
1380 |
|
1381 |
# Block: Checkboxes to select benchmarking parameters.
|
1382 |
with gr.Row():
|
|
|
1415 |
with gr.Tab("About"):
|
1416 |
gr.Markdown(open("docs/about.md").read())
|
1417 |
|
1418 |
+
# Detail mode toggling.
|
1419 |
+
for detail_mode_checkbox in all_detail_mode_checkboxes:
|
1420 |
+
detail_mode_checkbox.change(
|
1421 |
+
toggle_detail_mode_slider_visibility,
|
1422 |
+
inputs=[detail_mode_checkbox, *all_sliders],
|
1423 |
+
outputs=[detail_mode, *all_sliders],
|
1424 |
+
queue=False,
|
1425 |
+
)
|
1426 |
+
detail_mode_checkbox.change(
|
1427 |
+
toggle_detail_mode_sync_tabs,
|
1428 |
+
inputs=[detail_mode_checkbox, *all_detail_mode_checkboxes],
|
1429 |
+
outputs=[*all_detail_mode_checkboxes, *all_detail_text_components],
|
1430 |
+
queue=False,
|
1431 |
+
)
|
1432 |
+
|
1433 |
# Citation
|
1434 |
with gr.Accordion("📚 Citation", open=False, elem_id="citation-header"):
|
1435 |
citation_text = open("docs/citation.bib").read()
|
data/diffusion/image-to-video/models.json
CHANGED
@@ -2,22 +2,22 @@
|
|
2 |
"ali-vilab/i2vgen-xl": {
|
3 |
"url": "https://huggingface.co/ali-vilab/i2vgen-xl",
|
4 |
"nickname": "I2VGen XL",
|
5 |
-
"total_params":
|
6 |
-
"denoising_params":
|
7 |
"resolution": "1280x720"
|
8 |
},
|
9 |
"stabilityai/stable-video-diffusion-img2vid": {
|
10 |
"url": "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid",
|
11 |
"nickname": "Stable Video Diffusion",
|
12 |
-
"total_params":
|
13 |
-
"denoising_params":
|
14 |
"resolution": "1024x576"
|
15 |
},
|
16 |
"stabilityai/stable-video-diffusion-img2vid-xt": {
|
17 |
"url": "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt",
|
18 |
"nickname": "Stable Video Diffusion xt",
|
19 |
-
"total_params":
|
20 |
-
"denoising_params":
|
21 |
"resolution": "1024x576"
|
22 |
}
|
23 |
}
|
|
|
2 |
"ali-vilab/i2vgen-xl": {
|
3 |
"url": "https://huggingface.co/ali-vilab/i2vgen-xl",
|
4 |
"nickname": "I2VGen XL",
|
5 |
+
"total_params": 2.5,
|
6 |
+
"denoising_params": 1.4,
|
7 |
"resolution": "1280x720"
|
8 |
},
|
9 |
"stabilityai/stable-video-diffusion-img2vid": {
|
10 |
"url": "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid",
|
11 |
"nickname": "Stable Video Diffusion",
|
12 |
+
"total_params": 2.3,
|
13 |
+
"denoising_params": 1.5,
|
14 |
"resolution": "1024x576"
|
15 |
},
|
16 |
"stabilityai/stable-video-diffusion-img2vid-xt": {
|
17 |
"url": "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt",
|
18 |
"nickname": "Stable Video Diffusion xt",
|
19 |
+
"total_params": 2.3,
|
20 |
+
"denoising_params": 1.5,
|
21 |
"resolution": "1024x576"
|
22 |
}
|
23 |
}
|
data/diffusion/text-to-image/models.json
CHANGED
@@ -2,57 +2,57 @@
|
|
2 |
"kandinsky-community/kandinsky-2-2-decoder": {
|
3 |
"url": "https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder",
|
4 |
"nickname": "Kandinsky 2.2",
|
5 |
-
"total_params":
|
6 |
-
"denoising_params":
|
7 |
"resolution": "512x512"
|
8 |
},
|
9 |
"kandinsky-community/kandinsky-3": {
|
10 |
"url": "https://huggingface.co/kandinsky-community/kandinsky-3",
|
11 |
"nickname": "Kandinsky 3",
|
12 |
-
"total_params":
|
13 |
-
"denoising_params":
|
14 |
"resolution": "1024x1024"
|
15 |
},
|
16 |
"prompthero/openjourney-v4": {
|
17 |
"url": "https://huggingface.co/prompthero/openjourney-v4",
|
18 |
"nickname": "Openjourney V4",
|
19 |
-
"total_params":
|
20 |
-
"denoising_params":
|
21 |
"resolution": "512x512"
|
22 |
},
|
23 |
"segmind/SSD-1B": {
|
24 |
"url": "https://huggingface.co/segmind/SSD-1B",
|
25 |
"nickname": "SSD 1B",
|
26 |
-
"total_params":
|
27 |
-
"denoising_params":
|
28 |
"resolution": "1024x1024"
|
29 |
},
|
30 |
"stabilityai/sdxl-turbo": {
|
31 |
"url": "https://huggingface.co/stabilityai/sdxl-turbo",
|
32 |
"nickname": "Stable Diffusion XL Turbo",
|
33 |
-
"total_params":
|
34 |
-
"denoising_params":
|
35 |
"resolution": "512x512"
|
36 |
},
|
37 |
"stabilityai/stable-diffusion-2-1": {
|
38 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-2-1",
|
39 |
"nickname": "Stable Diffusion 2.1",
|
40 |
-
"total_params":
|
41 |
-
"denoising_params":
|
42 |
"resolution": "768x768"
|
43 |
},
|
44 |
"stabilityai/stable-diffusion-3-medium-diffusers": {
|
45 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers",
|
46 |
"nickname": "Stable Diffusion 3 Medium",
|
47 |
-
"total_params":
|
48 |
-
"denoising_params":
|
49 |
"resolution": "1024x1024"
|
50 |
},
|
51 |
"stabilityai/stable-diffusion-xl-base-1.0": {
|
52 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
|
53 |
"nickname": "Stable Diffusion XL Base 1.0",
|
54 |
-
"total_params":
|
55 |
-
"denoising_params":
|
56 |
"resolution": "1024x1024"
|
57 |
}
|
58 |
}
|
|
|
2 |
"kandinsky-community/kandinsky-2-2-decoder": {
|
3 |
"url": "https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder",
|
4 |
"nickname": "Kandinsky 2.2",
|
5 |
+
"total_params": 4.9,
|
6 |
+
"denoising_params": 1.3,
|
7 |
"resolution": "512x512"
|
8 |
},
|
9 |
"kandinsky-community/kandinsky-3": {
|
10 |
"url": "https://huggingface.co/kandinsky-community/kandinsky-3",
|
11 |
"nickname": "Kandinsky 3",
|
12 |
+
"total_params": 12.0,
|
13 |
+
"denoising_params": 3.1,
|
14 |
"resolution": "1024x1024"
|
15 |
},
|
16 |
"prompthero/openjourney-v4": {
|
17 |
"url": "https://huggingface.co/prompthero/openjourney-v4",
|
18 |
"nickname": "Openjourney V4",
|
19 |
+
"total_params": 1.1,
|
20 |
+
"denoising_params": 0.9,
|
21 |
"resolution": "512x512"
|
22 |
},
|
23 |
"segmind/SSD-1B": {
|
24 |
"url": "https://huggingface.co/segmind/SSD-1B",
|
25 |
"nickname": "SSD 1B",
|
26 |
+
"total_params": 2.2,
|
27 |
+
"denoising_params": 1.3,
|
28 |
"resolution": "1024x1024"
|
29 |
},
|
30 |
"stabilityai/sdxl-turbo": {
|
31 |
"url": "https://huggingface.co/stabilityai/sdxl-turbo",
|
32 |
"nickname": "Stable Diffusion XL Turbo",
|
33 |
+
"total_params": 3.5,
|
34 |
+
"denoising_params": 2.6,
|
35 |
"resolution": "512x512"
|
36 |
},
|
37 |
"stabilityai/stable-diffusion-2-1": {
|
38 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-2-1",
|
39 |
"nickname": "Stable Diffusion 2.1",
|
40 |
+
"total_params": 1.3,
|
41 |
+
"denoising_params": 0.9,
|
42 |
"resolution": "768x768"
|
43 |
},
|
44 |
"stabilityai/stable-diffusion-3-medium-diffusers": {
|
45 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers",
|
46 |
"nickname": "Stable Diffusion 3 Medium",
|
47 |
+
"total_params": 7.7,
|
48 |
+
"denoising_params": 2.0,
|
49 |
"resolution": "1024x1024"
|
50 |
},
|
51 |
"stabilityai/stable-diffusion-xl-base-1.0": {
|
52 |
"url": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
|
53 |
"nickname": "Stable Diffusion XL Base 1.0",
|
54 |
+
"total_params": 3.5,
|
55 |
+
"denoising_params": 2.6,
|
56 |
"resolution": "1024x1024"
|
57 |
}
|
58 |
}
|
data/diffusion/text-to-video/models.json
CHANGED
@@ -2,15 +2,15 @@
|
|
2 |
"ali-vilab/text-to-video-ms-1.7b": {
|
3 |
"url": "https://huggingface.co/ali-vilab/text-to-video-ms-1.7b",
|
4 |
"nickname": "ModelScope T2V",
|
5 |
-
"total_params":
|
6 |
-
"denoising_params":
|
7 |
"resolution": "256x256"
|
8 |
},
|
9 |
"guoyww/animatediff-motion-adapter-v1-5-3": {
|
10 |
"url": "https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3",
|
11 |
"nickname": "Animatediff",
|
12 |
-
"total_params":
|
13 |
-
"denoising_params":
|
14 |
"resolution": "512x512"
|
15 |
}
|
16 |
}
|
|
|
2 |
"ali-vilab/text-to-video-ms-1.7b": {
|
3 |
"url": "https://huggingface.co/ali-vilab/text-to-video-ms-1.7b",
|
4 |
"nickname": "ModelScope T2V",
|
5 |
+
"total_params": 1.8,
|
6 |
+
"denoising_params": 1.4,
|
7 |
"resolution": "256x256"
|
8 |
},
|
9 |
"guoyww/animatediff-motion-adapter-v1-5-3": {
|
10 |
"url": "https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3",
|
11 |
"nickname": "Animatediff",
|
12 |
+
"total_params": 1.9,
|
13 |
+
"denoising_params": 1.3,
|
14 |
"resolution": "512x512"
|
15 |
}
|
16 |
}
|
data/llm_text_generation/chat/models.json
CHANGED
@@ -2,71 +2,71 @@
|
|
2 |
"google/gemma-2-27b-it": {
|
3 |
"url": "https://huggingface.co/google/gemma-2-27b-it",
|
4 |
"nickname": "Gemma 2 27B",
|
5 |
-
"params":
|
6 |
},
|
7 |
"google/gemma-2-2b-it": {
|
8 |
"url": "https://huggingface.co/google/gemma-2-2b-it",
|
9 |
"nickname": "Gemma 2 2B",
|
10 |
-
"params":
|
11 |
},
|
12 |
"google/gemma-2-9b-it": {
|
13 |
"url": "https://huggingface.co/google/gemma-2-9b-it",
|
14 |
"nickname": "Gemma 2 9B",
|
15 |
-
"params":
|
16 |
},
|
17 |
"meta-llama/Meta-Llama-3.1-70B-Instruct": {
|
18 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct",
|
19 |
"nickname": "Llama 3.1 70B",
|
20 |
-
"params":
|
21 |
},
|
22 |
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
|
23 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct",
|
24 |
"nickname": "Llama 3.1 405B",
|
25 |
-
"params":
|
26 |
},
|
27 |
"meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
28 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct",
|
29 |
"nickname": "Llama 3.1 8B",
|
30 |
-
"params":
|
31 |
},
|
32 |
"microsoft/Phi-3-medium-4k-instruct": {
|
33 |
"url": "https://huggingface.co/microsoft/Phi-3-medium-4k-instruct",
|
34 |
"nickname": "Phi 3 Medium",
|
35 |
-
"params":
|
36 |
},
|
37 |
"microsoft/Phi-3-mini-4k-instruct": {
|
38 |
"url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
|
39 |
"nickname": "Phi 3 Mini",
|
40 |
-
"params":
|
41 |
},
|
42 |
"microsoft/Phi-3-small-8k-instruct": {
|
43 |
"url": "https://huggingface.co/microsoft/Phi-3-small-8k-instruct",
|
44 |
"nickname": "Phi 3 Small",
|
45 |
-
"params":
|
46 |
},
|
47 |
"mistralai/Mistral-7B-Instruct-v0.3": {
|
48 |
"url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3",
|
49 |
"nickname": "Mistral 7B",
|
50 |
-
"params":
|
51 |
},
|
52 |
"mistralai/Mistral-Large-Instruct-2407": {
|
53 |
"url": "https://huggingface.co/mistralai/Mistral-Large-Instruct-2407",
|
54 |
"nickname": "Mistral Large",
|
55 |
-
"params":
|
56 |
},
|
57 |
"mistralai/Mistral-Nemo-Instruct-2407": {
|
58 |
"url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
|
59 |
"nickname": "Mistral Nemo",
|
60 |
-
"params":
|
61 |
},
|
62 |
"mistralai/Mixtral-8x22B-Instruct-v0.1": {
|
63 |
"url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
|
64 |
"nickname": "Mixtral 8x22B",
|
65 |
-
"params":
|
66 |
},
|
67 |
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
68 |
"url": "https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1",
|
69 |
"nickname": "Mixtral 8x7B",
|
70 |
-
"params":
|
71 |
}
|
72 |
}
|
|
|
2 |
"google/gemma-2-27b-it": {
|
3 |
"url": "https://huggingface.co/google/gemma-2-27b-it",
|
4 |
"nickname": "Gemma 2 27B",
|
5 |
+
"params": 27
|
6 |
},
|
7 |
"google/gemma-2-2b-it": {
|
8 |
"url": "https://huggingface.co/google/gemma-2-2b-it",
|
9 |
"nickname": "Gemma 2 2B",
|
10 |
+
"params": 2
|
11 |
},
|
12 |
"google/gemma-2-9b-it": {
|
13 |
"url": "https://huggingface.co/google/gemma-2-9b-it",
|
14 |
"nickname": "Gemma 2 9B",
|
15 |
+
"params": 9
|
16 |
},
|
17 |
"meta-llama/Meta-Llama-3.1-70B-Instruct": {
|
18 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct",
|
19 |
"nickname": "Llama 3.1 70B",
|
20 |
+
"params": 70
|
21 |
},
|
22 |
"meta-llama/Meta-Llama-3.1-405B-Instruct": {
|
23 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct",
|
24 |
"nickname": "Llama 3.1 405B",
|
25 |
+
"params": 405
|
26 |
},
|
27 |
"meta-llama/Meta-Llama-3.1-8B-Instruct": {
|
28 |
"url": "https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct",
|
29 |
"nickname": "Llama 3.1 8B",
|
30 |
+
"params": 8
|
31 |
},
|
32 |
"microsoft/Phi-3-medium-4k-instruct": {
|
33 |
"url": "https://huggingface.co/microsoft/Phi-3-medium-4k-instruct",
|
34 |
"nickname": "Phi 3 Medium",
|
35 |
+
"params": 14
|
36 |
},
|
37 |
"microsoft/Phi-3-mini-4k-instruct": {
|
38 |
"url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
|
39 |
"nickname": "Phi 3 Mini",
|
40 |
+
"params": 4
|
41 |
},
|
42 |
"microsoft/Phi-3-small-8k-instruct": {
|
43 |
"url": "https://huggingface.co/microsoft/Phi-3-small-8k-instruct",
|
44 |
"nickname": "Phi 3 Small",
|
45 |
+
"params": 7
|
46 |
},
|
47 |
"mistralai/Mistral-7B-Instruct-v0.3": {
|
48 |
"url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3",
|
49 |
"nickname": "Mistral 7B",
|
50 |
+
"params": 7
|
51 |
},
|
52 |
"mistralai/Mistral-Large-Instruct-2407": {
|
53 |
"url": "https://huggingface.co/mistralai/Mistral-Large-Instruct-2407",
|
54 |
"nickname": "Mistral Large",
|
55 |
+
"params": 123
|
56 |
},
|
57 |
"mistralai/Mistral-Nemo-Instruct-2407": {
|
58 |
"url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
|
59 |
"nickname": "Mistral Nemo",
|
60 |
+
"params": 12
|
61 |
},
|
62 |
"mistralai/Mixtral-8x22B-Instruct-v0.1": {
|
63 |
"url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
|
64 |
"nickname": "Mixtral 8x22B",
|
65 |
+
"params": 141
|
66 |
},
|
67 |
"mistralai/Mixtral-8x7B-Instruct-v0.1": {
|
68 |
"url": "https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1",
|
69 |
"nickname": "Mixtral 8x7B",
|
70 |
+
"params": 47
|
71 |
}
|
72 |
}
|
data/llm_text_generation/code/models.json
CHANGED
@@ -2,46 +2,46 @@
|
|
2 |
"bigcode/starcoder2-15b": {
|
3 |
"url": "https://huggingface.co/bigcode/starcoder2-15b",
|
4 |
"nickname": "Starcoder2 15B",
|
5 |
-
"params":
|
6 |
},
|
7 |
"bigcode/starcoder2-3b": {
|
8 |
"url": "https://huggingface.co/bigcode/starcoder2-3b",
|
9 |
"nickname": "Starcoder2 3B",
|
10 |
-
"params":
|
11 |
},
|
12 |
"bigcode/starcoder2-7b": {
|
13 |
"url": "https://huggingface.co/bigcode/starcoder2-7b",
|
14 |
"nickname": "Starcoder2 7B",
|
15 |
-
"params":
|
16 |
},
|
17 |
"codellama/CodeLlama-13b-hf": {
|
18 |
"url": "https://huggingface.co/codellama/CodeLlama-13b-hf",
|
19 |
"nickname": "CodeLlama 13B",
|
20 |
-
"params":
|
21 |
},
|
22 |
"codellama/CodeLlama-34b-hf": {
|
23 |
"url": "https://huggingface.co/codellama/CodeLlama-34b-hf",
|
24 |
"nickname": "CodeLlama 34B",
|
25 |
-
"params":
|
26 |
},
|
27 |
"codellama/CodeLlama-70b-hf": {
|
28 |
"url": "https://huggingface.co/codellama/CodeLlama-70b-hf",
|
29 |
"nickname": "CodeLlama 70B",
|
30 |
-
"params":
|
31 |
},
|
32 |
"codellama/CodeLlama-7b-hf": {
|
33 |
"url": "https://huggingface.co/codellama/CodeLlama-7b-hf",
|
34 |
"nickname": "CodeLlama 7B",
|
35 |
-
"params":
|
36 |
},
|
37 |
"google/codegemma-1.1-2b": {
|
38 |
"url": "https://huggingface.co/google/codegemma-1.1-2b",
|
39 |
"nickname": "CodeGemma 2B",
|
40 |
-
"params":
|
41 |
},
|
42 |
"google/codegemma-7b": {
|
43 |
"url": "https://huggingface.co/google/codegemma-7b",
|
44 |
"nickname": "CodeGemma 7B",
|
45 |
-
"params":
|
46 |
}
|
47 |
}
|
|
|
2 |
"bigcode/starcoder2-15b": {
|
3 |
"url": "https://huggingface.co/bigcode/starcoder2-15b",
|
4 |
"nickname": "Starcoder2 15B",
|
5 |
+
"params": 15
|
6 |
},
|
7 |
"bigcode/starcoder2-3b": {
|
8 |
"url": "https://huggingface.co/bigcode/starcoder2-3b",
|
9 |
"nickname": "Starcoder2 3B",
|
10 |
+
"params": 3
|
11 |
},
|
12 |
"bigcode/starcoder2-7b": {
|
13 |
"url": "https://huggingface.co/bigcode/starcoder2-7b",
|
14 |
"nickname": "Starcoder2 7B",
|
15 |
+
"params": 7
|
16 |
},
|
17 |
"codellama/CodeLlama-13b-hf": {
|
18 |
"url": "https://huggingface.co/codellama/CodeLlama-13b-hf",
|
19 |
"nickname": "CodeLlama 13B",
|
20 |
+
"params": 13
|
21 |
},
|
22 |
"codellama/CodeLlama-34b-hf": {
|
23 |
"url": "https://huggingface.co/codellama/CodeLlama-34b-hf",
|
24 |
"nickname": "CodeLlama 34B",
|
25 |
+
"params": 34
|
26 |
},
|
27 |
"codellama/CodeLlama-70b-hf": {
|
28 |
"url": "https://huggingface.co/codellama/CodeLlama-70b-hf",
|
29 |
"nickname": "CodeLlama 70B",
|
30 |
+
"params": 70
|
31 |
},
|
32 |
"codellama/CodeLlama-7b-hf": {
|
33 |
"url": "https://huggingface.co/codellama/CodeLlama-7b-hf",
|
34 |
"nickname": "CodeLlama 7B",
|
35 |
+
"params": 7
|
36 |
},
|
37 |
"google/codegemma-1.1-2b": {
|
38 |
"url": "https://huggingface.co/google/codegemma-1.1-2b",
|
39 |
"nickname": "CodeGemma 2B",
|
40 |
+
"params": 2
|
41 |
},
|
42 |
"google/codegemma-7b": {
|
43 |
"url": "https://huggingface.co/google/codegemma-7b",
|
44 |
"nickname": "CodeGemma 7B",
|
45 |
+
"params": 7
|
46 |
}
|
47 |
}
|
data/mllm_text_generation/chat/models.json
CHANGED
@@ -2,31 +2,31 @@
|
|
2 |
"facebook/chameleon-30b": {
|
3 |
"url": "https://huggingface.co/facebook/chameleon-30b",
|
4 |
"nickname": "Chameleon 30B",
|
5 |
-
"params":
|
6 |
},
|
7 |
"facebook/chameleon-7b": {
|
8 |
"url": "https://huggingface.co/facebook/chameleon-7b",
|
9 |
"nickname": "Chameleon 7B",
|
10 |
-
"params":
|
11 |
},
|
12 |
"llava-hf/llama3-llava-next-8b-hf": {
|
13 |
"url": "https://huggingface.co/llava-hf/llama3-llava-next-8b-hf",
|
14 |
"nickname": "LLaVA NeXT 8B",
|
15 |
-
"params":
|
16 |
},
|
17 |
"llava-hf/llava-1.5-13b-hf": {
|
18 |
"url": "https://huggingface.co/llava-hf/llava-1.5-13b-hf",
|
19 |
"nickname": "LLaVA 1.5 13B",
|
20 |
-
"params":
|
21 |
},
|
22 |
"llava-hf/llava-1.5-7b-hf": {
|
23 |
"url": "https://huggingface.co/llava-hf/llava-1.5-7b-hf",
|
24 |
"nickname": "LLaVA 1.5 7B",
|
25 |
-
"params":
|
26 |
},
|
27 |
"microsoft/Phi-3-vision-128k-instruct": {
|
28 |
"url": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct",
|
29 |
"nickname": "Phi 3 Vision",
|
30 |
-
"params":
|
31 |
}
|
32 |
}
|
|
|
2 |
"facebook/chameleon-30b": {
|
3 |
"url": "https://huggingface.co/facebook/chameleon-30b",
|
4 |
"nickname": "Chameleon 30B",
|
5 |
+
"params": 34
|
6 |
},
|
7 |
"facebook/chameleon-7b": {
|
8 |
"url": "https://huggingface.co/facebook/chameleon-7b",
|
9 |
"nickname": "Chameleon 7B",
|
10 |
+
"params": 7
|
11 |
},
|
12 |
"llava-hf/llama3-llava-next-8b-hf": {
|
13 |
"url": "https://huggingface.co/llava-hf/llama3-llava-next-8b-hf",
|
14 |
"nickname": "LLaVA NeXT 8B",
|
15 |
+
"params": 8
|
16 |
},
|
17 |
"llava-hf/llava-1.5-13b-hf": {
|
18 |
"url": "https://huggingface.co/llava-hf/llava-1.5-13b-hf",
|
19 |
"nickname": "LLaVA 1.5 13B",
|
20 |
+
"params": 13
|
21 |
},
|
22 |
"llava-hf/llava-1.5-7b-hf": {
|
23 |
"url": "https://huggingface.co/llava-hf/llava-1.5-7b-hf",
|
24 |
"nickname": "LLaVA 1.5 7B",
|
25 |
+
"params": 7
|
26 |
},
|
27 |
"microsoft/Phi-3-vision-128k-instruct": {
|
28 |
"url": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct",
|
29 |
"nickname": "Phi 3 Vision",
|
30 |
+
"params": 4
|
31 |
}
|
32 |
}
|