Spaces:
Running
Running
Jae-Won Chung
commited on
Commit
·
48843fe
1
Parent(s):
91c65f8
Install lm-evaluation-harness in Dockerfile
Browse files- Dockerfile +8 -0
- LEADERBOARD.md +1 -1
- pegasus/README.md +1 -1
Dockerfile
CHANGED
@@ -26,6 +26,14 @@ ADD . /workspace/leaderboard
|
|
26 |
RUN cd /workspace/leaderboard \
|
27 |
&& pip install -r requirements-benchmark.txt
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Where all the weights downloaded from Hugging Face Hub will go to
|
30 |
ENV TRANSFORMERS_CACHE=/data/leaderboard/hfcache
|
31 |
|
|
|
26 |
RUN cd /workspace/leaderboard \
|
27 |
&& pip install -r requirements-benchmark.txt
|
28 |
|
29 |
+
# Clone lm-evaluation-harness and install
|
30 |
+
RUN cd /workspace \
|
31 |
+
&& git clone https://github.com/EleutherAI/lm-evaluation-harness.git \
|
32 |
+
&& cd lm-evaluation-harness \
|
33 |
+
&& git checkout 72b7f0c00a6ff94632c5b873fc24e093ae74fa47 \
|
34 |
+
&& rm -r .git \
|
35 |
+
&& pip install -e .
|
36 |
+
|
37 |
# Where all the weights downloaded from Hugging Face Hub will go to
|
38 |
ENV TRANSFORMERS_CACHE=/data/leaderboard/hfcache
|
39 |
|
LEADERBOARD.md
CHANGED
@@ -42,7 +42,7 @@ Find our benchmark script for one model [here](https://github.com/ml-energy/lead
|
|
42 |
- PyTorch 2.0.1
|
43 |
- [Zeus](https://ml.energy/zeus) -- For GPU time and energy measurement
|
44 |
- [FastChat](https://github.com/lm-sys/fastchat) -- For running inference on various models
|
45 |
-
- [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/
|
46 |
|
47 |
### Hardware
|
48 |
|
|
|
42 |
- PyTorch 2.0.1
|
43 |
- [Zeus](https://ml.energy/zeus) -- For GPU time and energy measurement
|
44 |
- [FastChat](https://github.com/lm-sys/fastchat) -- For running inference on various models
|
45 |
+
- [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/72b7f0c00a6ff94632c5b873fc24e093ae74fa47) -- For NLP evaluation metrics
|
46 |
|
47 |
### Hardware
|
48 |
|
pegasus/README.md
CHANGED
@@ -65,7 +65,7 @@ After all the tasks finish, aggregate all the data into one node and run [`compu
|
|
65 |
|
66 |
## NLP benchmark
|
67 |
|
68 |
-
We'll use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/
|
69 |
|
70 |
Use Pegasus to run benchmarks for all the models across all nodes.
|
71 |
|
|
|
65 |
|
66 |
## NLP benchmark
|
67 |
|
68 |
+
We'll use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/72b7f0c00a6ff94632c5b873fc24e093ae74fa47) to run models through three NLP datasets: ARC challenge (`arc`), HellaSwag (`hellaswag`), and TruthfulQA (`truthfulqa`).
|
69 |
|
70 |
Use Pegasus to run benchmarks for all the models across all nodes.
|
71 |
|