Spaces:
Running
Running
Jae-Won Chung
commited on
Commit
·
19b22c9
0
Parent(s):
Initial commit
Browse files- .gitignore +1 -0
- README.md +13 -0
- inference.py +131 -0
- pyrightconfig.json +3 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.envrc
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ML.ENERGY Leaderboard
|
2 |
+
|
3 |
+
## Devs
|
4 |
+
|
5 |
+
Currently setup in `ampere02`:
|
6 |
+
|
7 |
+
1. Find model weights in `/data/leaderboard/weights/`, e.g. subdirectory `llama` and `vicuna`.
|
8 |
+
|
9 |
+
2. Let's share the Huggingface Transformer cache:
|
10 |
+
|
11 |
+
```bash
|
12 |
+
export TRANSFORMERS_CACHE=/data/leaderboard/hfcache
|
13 |
+
```
|
inference.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Perform inference of one model on one input prompt and measure time and energy."""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from typing import Literal
|
6 |
+
|
7 |
+
import tyro
|
8 |
+
import rich
|
9 |
+
import torch
|
10 |
+
from fastchat.serve.inference import generate_stream
|
11 |
+
from fastchat.model.model_adapter import load_model, get_conversation_template
|
12 |
+
from zeus.monitor import ZeusMonitor
|
13 |
+
|
14 |
+
SYSTEM_PROMPTS = {
|
15 |
+
"chat": (
|
16 |
+
"A chat between a human user (prompter) and an artificial intelligence (AI) assistant. "
|
17 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions."
|
18 |
+
),
|
19 |
+
"chat-concise": (
|
20 |
+
"A chat between a human user (prompter) and an artificial intelligence (AI) assistant. "
|
21 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions. "
|
22 |
+
"The assistnat's answers are concise but high-quality."
|
23 |
+
),
|
24 |
+
"instruct": (
|
25 |
+
"Below is an instruction that describes a task. "
|
26 |
+
"Write a response that appropriately completes the request."
|
27 |
+
),
|
28 |
+
"instruct-concise": (
|
29 |
+
"Below is an instruction that describes a task. "
|
30 |
+
"Write a response that appropriately completes the request."
|
31 |
+
"The response should be concise but high-quality."
|
32 |
+
),
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
def main(
|
37 |
+
model_path: str,
|
38 |
+
input_prompt: str,
|
39 |
+
device_index: int = 0,
|
40 |
+
task: Literal[tuple(SYSTEM_PROMPTS)] = "chat", # type: ignore
|
41 |
+
load_8bit: bool = False,
|
42 |
+
temperature: float = 0.7,
|
43 |
+
repitition_penalty: float = 1.0,
|
44 |
+
max_new_tokens: int = 512,
|
45 |
+
) -> None:
|
46 |
+
"""Run the main routine.
|
47 |
+
|
48 |
+
Code structure is based on
|
49 |
+
https://github.com/lm-sys/FastChat/blob/57dea54055/fastchat/serve/inference.py#L249
|
50 |
+
|
51 |
+
Args:
|
52 |
+
model_path: Path to or Huggingface Hub Id of the model.
|
53 |
+
input_prompt: Input prompt to use for inference.
|
54 |
+
device_index: Index of the GPU to use for inference.
|
55 |
+
task: Type of task to perform inference on.
|
56 |
+
load_8bit: Whether to load the model in 8-bit mode.
|
57 |
+
temperature: Temperature to use for sampling.
|
58 |
+
repitition_penalty: Repitition penalty to use for the model.
|
59 |
+
max_new_tokens: Maximum numbers of tokens to generate, ignoring the prompt.
|
60 |
+
"""
|
61 |
+
# NOTE(JW): ChatGLM is implemented as a special case in FastChat inference.
|
62 |
+
# Also, it's primarily a model that's fine-tuned for Chinese, so it doesn't
|
63 |
+
# make sense to prompt it in English and talk about its verbosity.
|
64 |
+
if "chatglm" in model_path.lower():
|
65 |
+
raise ValueError("ChatGLM is not supported.")
|
66 |
+
|
67 |
+
# Set the device.
|
68 |
+
torch.cuda.set_device(f"cuda:{device_index}")
|
69 |
+
|
70 |
+
# Load the model (Huggingface PyTorch) and tokenizer (Huggingface).
|
71 |
+
model, tokenizer = load_model(
|
72 |
+
model_path=model_path,
|
73 |
+
device="cuda",
|
74 |
+
num_gpus=1,
|
75 |
+
max_gpu_memory=None,
|
76 |
+
load_8bit=load_8bit,
|
77 |
+
cpu_offloading=False,
|
78 |
+
gptq_config=None,
|
79 |
+
debug=False,
|
80 |
+
)
|
81 |
+
|
82 |
+
# Chats are accumulated in a conversation helper object.
|
83 |
+
conv = get_conversation_template(model_path)
|
84 |
+
|
85 |
+
# Standardize the system prompt for every model.
|
86 |
+
conv.system = SYSTEM_PROMPTS[task]
|
87 |
+
conv.messages = []
|
88 |
+
conv.offset = 0
|
89 |
+
|
90 |
+
# Construct the input prompt.
|
91 |
+
conv.append_message(conv.roles[0], input_prompt)
|
92 |
+
conv.append_message(conv.roles[1], "")
|
93 |
+
prompt = conv.get_prompt()
|
94 |
+
|
95 |
+
# Generate the ouptut from the model.
|
96 |
+
gen_params = {
|
97 |
+
"model": model_path,
|
98 |
+
"prompt": prompt,
|
99 |
+
"temperature": temperature,
|
100 |
+
"repitition_penalty": repitition_penalty,
|
101 |
+
"max_new_tokens": max_new_tokens,
|
102 |
+
"stop": conv.stop_str,
|
103 |
+
"stop_token_ids": conv.stop_token_ids,
|
104 |
+
"echo": False,
|
105 |
+
}
|
106 |
+
output_stream = generate_stream(model, tokenizer, gen_params, device="cuda")
|
107 |
+
output = {}
|
108 |
+
|
109 |
+
# Inference and measurement!
|
110 |
+
monitor = ZeusMonitor(gpu_indices=[torch.cuda.current_device()])
|
111 |
+
monitor.begin_window("inference")
|
112 |
+
for output in output_stream:
|
113 |
+
pass
|
114 |
+
measurements = monitor.end_window("inference")
|
115 |
+
|
116 |
+
# Print the input and output.
|
117 |
+
rich.print(f"\n[u]Prompt[/u]:\n{prompt.strip()}\n")
|
118 |
+
output_text = output["text"]
|
119 |
+
rich.print(f"\n[u]Response[/u]:\n{output_text.strip()}\n")
|
120 |
+
|
121 |
+
# Print numbers.
|
122 |
+
num_tokens = len(tokenizer.encode(output_text))
|
123 |
+
rich.print(measurements)
|
124 |
+
rich.print(f"Number of tokens: {num_tokens}")
|
125 |
+
rich.print(f"Tokens per seconds: {num_tokens / measurements.time:.2f}")
|
126 |
+
rich.print(f"Joules per token: {measurements.total_energy / num_tokens:.2f}")
|
127 |
+
rich.print(f"Average power consumption: {measurements.total_energy / measurements.time:.2f}")
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
tyro.cli(main)
|
pyrightconfig.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"extraPaths": ["../zeus", "../fastchat"],
|
3 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
zeus-ml==0.4.0
|
2 |
+
fastchat==0.2.14
|
3 |
+
einops==0.6.1
|
4 |
+
tyro==0.5.3
|
5 |
+
rwkv==0.7.5
|