File size: 17,209 Bytes
2fb0234
a679cf2
 
 
 
 
 
 
36058af
a679cf2
36058af
 
a679cf2
 
 
 
36058af
a679cf2
 
 
 
 
 
4e9ddf9
a679cf2
 
 
 
4e9ddf9
a679cf2
 
 
4e9ddf9
a679cf2
 
 
4e9ddf9
 
a679cf2
 
 
36058af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a679cf2
 
 
e3571c1
2ad8f23
a679cf2
 
 
 
 
 
36058af
a679cf2
2ad8f23
a679cf2
 
 
 
e3571c1
2ad8f23
 
 
 
 
 
 
a679cf2
 
 
 
 
 
 
e3f95b1
 
 
a679cf2
36fdd36
 
a679cf2
2ad8f23
3d567c0
a679cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
e3f95b1
a679cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36058af
a679cf2
 
 
 
 
 
 
 
36058af
 
 
 
 
 
 
 
 
 
 
a679cf2
36058af
 
 
 
 
 
 
 
 
3d567c0
 
a679cf2
 
36058af
 
 
a679cf2
 
36058af
a679cf2
36058af
a679cf2
 
 
 
 
 
36058af
 
 
a679cf2
 
 
 
 
 
36058af
a679cf2
 
 
 
 
36058af
a679cf2
 
 
 
36058af
 
a679cf2
 
 
 
 
 
 
 
 
 
 
36058af
 
 
a679cf2
 
e3f95b1
36058af
 
 
 
 
a679cf2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
"""Perform inference of one model on a dataset and measure time and energy."""

from __future__ import annotations

import os
import json
import copy
import atexit
from typing import Generator, Literal, Iterable, Dict

import gc
import numpy as np
import tyro
import torch
import rich
from rich.table import Table
from fastchat.serve.inference import prepare_logits_processor
from fastchat.model.model_adapter import load_model, get_conversation_template
from zeus.monitor import ZeusMonitor

SYSTEM_PROMPTS = {
    "chat": (
        "A chat between a human user (prompter) and an artificial intelligence (AI) assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions. "
    ),
    "chat-concise": (
        "A chat between a human user (prompter) and an artificial intelligence (AI) assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions. "
        "The assistant's answers are very concise. "
    ),
    "instruct": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request. "
    ),
    "instruct-concise": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request. "
        "The response should be very concise. "
    ),
}

def is_partial_stop(output: str, stop_str: str):
    """Check whether the output contains a partial stop str."""
    for i in range(0, min(len(output), len(stop_str))):
        if stop_str.startswith(output[-i:]):
            return True
    return False

@torch.inference_mode()
def generate_stream(
    model,
    tokenizer,
    params: Dict,
    device: str,
    context_len: int = 2048,
):
    # Read parameters
    prompts = params["prompt"]
    temperature = float(params.get("temperature", 1.0))
    repetition_penalty = float(params.get("repetition_penalty", 1.0))
    top_p = float(params.get("top_p", 1.0))
    top_k = int(params.get("top_k", -1))  # -1 means disable
    max_new_tokens = int(params.get("max_new_tokens", 256))
    stop_str = params.get("stop", None)
    stop_token_ids = params.get("stop_token_ids", None) or []
    stop_token_ids.append(tokenizer.eos_token_id)
    batch_size = len(prompts)

    # left append prompts with eos to make all input prompts the same length
    tokenizer.padding_side = "left" 
    tokenizer.pad_token = tokenizer.eos_token

    logits_processor = prepare_logits_processor(
        temperature, repetition_penalty, top_p, top_k
    )

    input_ids = tokenizer(prompts, padding=True).input_ids
    output_ids = list(input_ids)

    if model.config.is_encoder_decoder:
        max_src_len = context_len
    else:  # truncate
        max_src_len = context_len - max_new_tokens - 8

    input_ids = [input_id[-max_src_len:] for input_id in input_ids]
    input_len = len(input_ids[0])

    if model.config.is_encoder_decoder:
        encoder_output = model.encoder(
            input_ids=torch.as_tensor(input_ids, device=device)
        )[0]
        start_ids = torch.as_tensor(
            [[model.generation_config.decoder_start_token_id] for _ in range(batch_size)],
            dtype=torch.int64,
            device=device,
        )
    
    past_key_values = out = None
    stopped = np.array(batch_size*[False])
    for i in range(max_new_tokens):
        if i == 0:  # prefill
            if model.config.is_encoder_decoder:
                out = model.decoder(
                    input_ids=start_ids,
                    encoder_hidden_states=encoder_output,
                    use_cache=True,
                )
                logits = model.lm_head(out[0])
            else:
                out = model(torch.as_tensor(input_ids, device=device), use_cache=True)
                logits = out.logits
            past_key_values = out.past_key_values
        else:  # decoding
            if model.config.is_encoder_decoder:
                out = model.decoder(
                    input_ids=torch.as_tensor(
                        [[token[0]] for token in tokens], device=device
                    ),
                    encoder_hidden_states=encoder_output,
                    use_cache=True,
                    past_key_values=past_key_values,
                )
                logits = model.lm_head(out[0])
            else:
                out = model(
                    input_ids=torch.as_tensor(
                        [[token[0]] for token in tokens], device=device
                    ),
                    use_cache=True,
                    past_key_values=past_key_values,
                )
                logits = out.logits
            past_key_values = out.past_key_values

        if logits_processor:
            if repetition_penalty > 1.0:
                tmp_output_ids = torch.as_tensor(output_ids, device=logits.device)
            else:
                tmp_output_ids = None
            last_token_logits = logits_processor(tmp_output_ids, logits[:, -1, :])
        else:
            last_token_logits = logits[:, -1, :]

        if device == "mps":
            # Switch to CPU by avoiding some bugs in mps backend.
            last_token_logits = last_token_logits.float().to("cpu")

        if temperature < 1e-5 or top_p < 1e-8:  # greedy
            _, indices = torch.topk(last_token_logits, 2)
            tokens = [[int(token) for token in query] for query in indices.tolist()]
        else:
            probs = torch.softmax(last_token_logits, dim=-1)
            indices = torch.multinomial(probs, num_samples=2)
            tokens = [[int(token) for token in query] for query in indices.tolist()]
        
        old_stopped = stopped
        stopped = np.logical_or(old_stopped, np.array([True if token[0] in stop_token_ids else False for token in tokens]))
        output_ids = [ids + [token[0]] for ids, token in zip(output_ids, tokens)]

        def slice(s, pos):
            return s[:pos]
        vec_slice = np.vectorize(slice, otypes=[str])
        vec_is_partial_stop = np.vectorize(is_partial_stop)

        # Yield the output tokens
        if any(stopped):
            tmp_output_ids = [ids[input_len:] for ids in output_ids]
            rfind_start = 0
            output = tokenizer.batch_decode(
                tmp_output_ids,
                skip_special_tokens=True,
                spaces_between_special_tokens=False,
                clean_up_tokenization_spaces=True,
            )
            output = np.array(output)

            partially_stopped = np.array(len(output_ids) * [False])
            different_indices = np.empty(shape=(0,))
            if stop_str:
                if isinstance(stop_str, str):
                    pos_array = np.char.rfind(output, stop_str, rfind_start)
                    find_stop = pos_array != -1
                    output[find_stop] = vec_slice(output[find_stop], pos_array[find_stop])
                    stopped = find_stop
                    partially_stopped = vec_is_partial_stop(output, stop_str)
                elif isinstance(stop_str, Iterable):
                    for each_stop in stop_str:
                        pos_array = np.char.rfind(output, stop_str, rfind_start)
                        find_stop = pos_array != -1
                        output[find_stop] = vec_slice(output[find_stop], pos_array[find_stop])
                        stopped = find_stop
                        partially_stopped = partially_stopped | vec_is_partial_stop(output, each_stop)
                else:
                    raise ValueError("Invalid stop field type.")

            # Prevent yielding partial stop sequence
            if not any(partially_stopped):
                # indicates which request in batch stopped
                different_indices = np.where(stopped != old_stopped)[0]
                stop_length = np.array([(i, len(output[i])) for i in different_indices])
                yield {
                    "text": output,
                    "stop_length": stop_length,
                }

        if all(stopped):
            break

    false_indices = np.where(stopped == False)[0]
    if any(stopped) == False:
        tmp_output_ids = [ids[input_len:] for ids in output_ids]
        output = tokenizer.batch_decode(
            tmp_output_ids,
            skip_special_tokens=True,
            spaces_between_special_tokens=False,
            clean_up_tokenization_spaces=True,
        )
    stop_length = np.array([(i, len(output[i])) for i in false_indices])

    yield {
        "text": output,
        "stop_length": stop_length,
    }

    # Clean
    del past_key_values, out
    gc.collect()
    torch.cuda.empty_cache()


def main(
    model_path: str,
    input_file: str = "sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled.json",
    output_dir: str = "data",
    device_index: int = 0,
    task: Literal[tuple(SYSTEM_PROMPTS)] = "chat",  # type: ignore
    load_8bit: bool = False,
    temperature: float = 0.7,
    repitition_penalty: float = 1.0,
    max_new_tokens: int = 512,
    batch: int = 1,
) -> None:
    """Run benchmarking for one model on the entire input file.

    Args:
        model_path: Path to or Huggingface Hub Id of the model.
        input_file: Path to the input JSON file. Assumed to be our cleaned ShareGPT data.
            (Default: "sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled.json")
        output_dir: Path to the output directory. (Default: "data")
        device_index: Index of the GPU to use for inference. (Default: 0)
        task: Type of task to perform inference on. (Default: "chat")
        load_8bit: Whether to load the model in 8-bit mode. (Default: False)
        temperature: Temperature to use for sampling. (Default: 0.7)
        repitition_penalty: Repitition penalty to use for the model. (Default: 1.0)
        max_new_tokens: Maximum numbers of tokens to generate, ignoring the prompt. (Default: 512)
    """
    # NOTE(JW): ChatGLM is implemented as a special case in FastChat inference.
    # Also, it's primarily a model that's fine-tuned for Chinese, so it doesn't
    # make sense to prompt it in English and talk about its verbosity.
    if "chatglm" in model_path.lower():
        raise ValueError("ChatGLM is not supported.")

    # Get Rich Console instance.
    console = rich.get_console()

    # Print out what we're about to do.
    if model_path.endswith("/"):
        model_path = model_path[:-1]
    model_name_cleaned = "--".join(model_path.split("/")[-2:])
    output_dir = f"{output_dir}/{task}/{model_name_cleaned}"
    output_csv_path = f"{output_dir}/benchmark_batch_{batch}.json"
    config_json_path = f"{output_dir}/config.json"
    table = Table(title="Benchmark")
    table.add_column("Configuration")
    table.add_column("Value")
    table.add_row("Model", f"{model_name_cleaned} (path: {model_path})")
    table.add_row("Input", input_file)
    table.add_row("Device", f"cuda:{device_index}")
    table.add_row("Task", task)
    table.add_row("8-bit", str(load_8bit))
    table.add_row("Temperature", f"{temperature:.2f}")
    table.add_row("Repitition Penalty", f"{repitition_penalty:.2f}")
    table.add_row("Max New Tokens", str(max_new_tokens))
    table.add_row("Output CSV", output_csv_path)
    table.add_row("Config JSON", config_json_path)
    console.print(table)

    # Set the device.
    torch.cuda.set_device(f"cuda:{device_index}")

    # Load the model (Huggingface PyTorch) and tokenizer (Huggingface).
    model, tokenizer = load_model(
        model_path=model_path,
        device="cuda",
        num_gpus=1,
        max_gpu_memory=None,
        load_8bit=load_8bit,
        cpu_offloading=False,
        gptq_config=None,
        debug=False,
    )

    # Chats are accumulated in a conversation helper object.
    conv_base = get_conversation_template(model_path)

    # Standardize the system prompt for every model.
    conv_base.system = SYSTEM_PROMPTS[task]
    conv_base.messages = []
    conv_base.offset = 0

    gen_params = {
        "model": model_path,
        "prompt": "EMPTY",
        "temperature": temperature,
        "repitition_penalty": repitition_penalty,
        "max_new_tokens": max_new_tokens,
        "stop": conv_base.stop_str,
        "stop_token_ids": conv_base.stop_token_ids,
    }

    monitor = ZeusMonitor(gpu_indices=[torch.cuda.current_device()])

    # Output files.
    # Leave only the last two path components and replace slashes with double dashes.
    os.makedirs(output_dir, exist_ok=True)
    output_json = open(output_csv_path, "w")
    output_json.write("[\n")
    output_json.flush()
    # Conclude the JSON file format with a closing bracket. Using `atexit` will
    # handle all cases of the program exiting, including Ctrl-C and errors.
    atexit.register(lambda: output_json.write("\n]\n"))

    # Dump the configuration to a JSON file.
    with open(config_json_path, "w") as config_json:
        json.dump(
            {
                "model_path": model_path,
                "input_file": input_file,
                "device_index": device_index,
                "task": task,
                "load_8bit": load_8bit,
                "temperature": temperature,
                "repitition_penalty": repitition_penalty,
                "max_new_tokens": max_new_tokens,
            },
            config_json,
            indent=4,
        )
        config_json.write("\n")

    def dataloader(input_file: str) -> Generator[tuple[bool, str], None, None]:
        """Yields a tuple of whether this is a warmup run and the input prompt."""
        for _ in range(3*batch):
            yield True, "Say something long and random. I don't care about the content."
        for item in json.load(open(input_file, "r")):
            input_prompt = item["conversations"][0]["value"]
            yield False, input_prompt

    # Warm up the GPU with some random prompts.
    # Forward through all the prompts.
    is_first = True
    convs = []
    prompts = []
    data_iter = iter(dataloader(input_file))

    end_of_file = False  # flag to track the end of the file
    while True:
        try:
            is_warmup, input_prompt = next(data_iter)
        except StopIteration:
            end_of_file = True  # no more data

        # Construct the input prompt.
        if not end_of_file:
            conv = copy.deepcopy(conv_base)
            conv.append_message(conv.roles[0], input_prompt)
            conv.append_message(conv.roles[1], "")
            prompt = conv.get_prompt()
            prompts.append(prompt)
            convs.append(conv)
            if (len(convs) < batch): continue
        gen_params["prompt"] = prompts
        if end_of_file and len(prompts) == 0:
            break

        # Print input prompt.
        for i in range(len(convs)):
            console.print(f"\n[u cyan]{'Warmup ' if is_warmup else ''}Prompt[/u cyan](batch_{i}):")
            console.print(prompts[i].strip() + "\n", markup=False)

        # Generate the ouptut from the model.
        output_stream = generate_stream(model, tokenizer, gen_params, device="cuda", context_len=2048)
        output = {}
        batch_token_len = {}

        #################################################
        # Inference and measurement zone!
        #################################################
        monitor.begin_window("inference")
        for output in output_stream:
            stop_length = output["stop_length"]
            for it in stop_length:
                batch_token_len[it[0]] = it[1]
        measurements = monitor.end_window("inference")
        #################################################
        
        # Record numbers.
        output_text = output["text"]
        if not is_warmup:
            response_length = int(sum(batch_token_len.values()))  # number of valid tokens
            latency = measurements.time
            throughput = response_length / latency
            energy = measurements.total_energy
            output = {
                "model": model_name_cleaned,
                "batch": len(convs),
                "throughput": throughput,
                "response_length": response_length,
                "latency": latency,
                "energy": energy,
                "input": [prompt.strip() for prompt in prompts],
                "output": [output_text[i][:batch_token_len[i]].strip() for i in range(len(convs))],
            }
            output_str = json.dumps(output, indent=4)
            if not is_warmup:
                if not is_first:
                    output_json.write(",\n" + output_str)
                else:
                    is_first = False
                    output_json.write(output_str)
            output_json.flush()

        # Print the response.
        for i in range(len(convs)):
            console.print(f"\n[u cyan]{'Warmup ' if is_warmup else ''}Response[/u cyan](batch_{i}):")
            console.print(output_text[i][:batch_token_len[i]].strip() + "\n", markup=False)

        # Print measurement.
        console.print(measurements)
        convs = []
        prompts = []

        if end_of_file:
            break


if __name__ == "__main__":
    tyro.cli(main)