import json import os import shutil import requests import gradio as gr from huggingface_hub import Repository from text_generation import Client from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css HF_TOKEN = os.environ.get("HF_TOKEN", None) API_URL = "https://api-inference.huggingface.co/models/" model_id_1, model_id_2 = "Phind/Phind-CodeLlama-34B-v2", "WizardLM/WizardCoder-Python-34B-V1.0" FIM_PREFIX = "
 "
FIM_MIDDLE = " "
FIM_SUFFIX = " "

FIM_INDICATOR = ""

EOS_STRING = ""
EOT_STRING = ""

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[
        gr.themes.GoogleFont("Open Sans"),
        "ui-sans-serif",
        "system-ui",
        "sans-serif",
    ],
)

def generate(
    model_id, prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    client = Client(
        f"{API_URL}{model_id}",
        headers={"Authorization": f"Bearer {HF_TOKEN}"},
    )

    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    fim_mode = False

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    if FIM_INDICATOR in prompt:
        fim_mode = True
        try:
            prefix, suffix = prompt.split(FIM_INDICATOR)
        except:
            raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!")
        prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}"

    
    stream = client.generate_stream(prompt, **generate_kwargs)
    

    if fim_mode:
        output = prefix
    else:
        output = prompt

    previous_token = ""
    for response in stream:
        if any([end_token in response.token.text for end_token in [EOS_STRING, EOT_STRING]]):
            if fim_mode:
                output += suffix
                yield output
                return output
                print("output", output)
            else:
                return output
        else:
            output += response.token.text
        previous_token = response.token.text
        yield output
    return output

def generate_both(prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
    generator_1, generator_2 = generate(model_id_1, prompt, temperature, max_new_tokens, top_p, repetition_penalty), generate(model_id_2, prompt, temperature, max_new_tokens, top_p, repetition_penalty)
    output_1, output_2 = "", ""
    output_1_end, output_2_end = False, False

    while True:
        try:
            output_1 = next(generator_1)
        except StopIteration:
            output_1_end = True

        try:
            output_2 = next(generator_2)
        except StopIteration:
            output_2_end = True
        
        if output_1_end and output_2_end:
            yield output_1, output_2
            return output_1, output_2

        yield output_1, output_2
        
examples = [
    "X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score",
    "// Returns every other value in the array as a new array.\nfunction everyOther(arr) {",
    "Poor English: She no went to the market. Corrected English:",
    "def alternating(list1, list2):\n   results = []\n   for i in range(min(len(list1), len(list2))):\n       results.append(list1[i])\n       results.append(list2[i])\n   if len(list1) > len(list2):\n       \n   else:\n       results.extend(list2[i+1:])\n   return results",
    "def remove_non_ascii(s: str) -> str:\n    \"\"\" \nprint(remove_non_ascii('afkdj$$('))",
]


def process_example(args):
    for x in generate_both(args):
        pass
    return x


css = ".generating {visibility: hidden}"

monospace_css = """
#q-input textarea {
    font-family: monospace, 'Consolas', Courier, monospace;
}
"""


css += share_btn_css + monospace_css + ".gradio-container {color: black}"

description = f"""

Phind VS WizardCoder Playground

Compare python code generations from {model_id_1} (73.8% pass@1 on HumanEval) & {model_id_2} (73.2% pass@1 on HumanEval), which makes them surpass GPT4 (2023/03/15) on the same benchmark

Moreover, you can try those models on VSCode using HF Autocomplete extenson. Read more here.

This space is cloned from codellama/codellama-playground

""" with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo: with gr.Column(): gr.Markdown(description) with gr.Row(): with gr.Column(): instruction = gr.Textbox( placeholder="Enter your code here", lines=5, label="Input", elem_id="q-input", ) submit = gr.Button("Generate", variant="primary") with gr.Row(): output_1 = gr.Code(elem_id="q-output", lines=30, label=f"{model_id_1} Output", language="python") output_2 = gr.Code(elem_id="q-output", lines=30, label=f"{model_id_2} Output", language="python") with gr.Row(): with gr.Column(): with gr.Accordion("Advanced settings", open=False): with gr.Row(): column_1, column_2 = gr.Column(), gr.Column() with column_1: temperature = gr.Slider( label="Temperature", value=0.1, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ) max_new_tokens = gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=8192, step=64, interactive=True, info="The maximum numbers of new tokens", ) with column_2: top_p = gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ) repetition_penalty = gr.Slider( label="Repetition penalty", value=1.05, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) gr.Examples( examples=examples, inputs=[instruction], cache_examples=False, fn=process_example, outputs=[output_1], ) submit.click( generate_both, inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty], outputs=[output_1, output_2], ) demo.queue(concurrency_count=16).launch(debug=True)