import json import os import shutil import requests import gradio as gr from huggingface_hub import Repository from text_generation import Client from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css HF_TOKEN = os.environ.get("HF_TOKEN", None) API_URL = "https://api-inference.huggingface.co/models/" model_id_1, model_id_2 = "Phind/Phind-CodeLlama-34B-v2", "WizardLM/WizardCoder-Python-34B-V1.0" FIM_PREFIX = "
" FIM_MIDDLE = "" FIM_SUFFIX = " " FIM_INDICATOR = " " EOS_STRING = "" EOT_STRING = " " theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", radius_size=gr.themes.sizes.radius_sm, font=[ gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif", ], ) def generate( model_id, prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): client = Client( f"{API_URL}{model_id}", headers={"Authorization": f"Bearer {HF_TOKEN}"}, ) temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) fim_mode = False generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) if FIM_INDICATOR in prompt: fim_mode = True try: prefix, suffix = prompt.split(FIM_INDICATOR) except: raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!") prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" stream = client.generate_stream(prompt, **generate_kwargs) if fim_mode: output = prefix else: output = prompt previous_token = "" for response in stream: if any([end_token in response.token.text for end_token in [EOS_STRING, EOT_STRING]]): if fim_mode: output += suffix yield output return output print("output", output) else: return output else: output += response.token.text previous_token = response.token.text yield output return output def generate_both(prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): generator_1, generator_2 = generate(model_id_1, prompt, temperature, max_new_tokens, top_p, repetition_penalty), generate(model_id_2, prompt, temperature, max_new_tokens, top_p, repetition_penalty) output_1, output_2 = "", "" output_1_end, output_2_end = False, False while True: try: output_1 = next(generator_1) except StopIteration: output_1_end = True try: output_2 = next(generator_2) except StopIteration: output_2_end = True if output_1_end and output_2_end: yield output_1, output_2 return output_1, output_2 yield output_1, output_2 examples = [ "X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score", "// Returns every other value in the array as a new array.\nfunction everyOther(arr) {", "Poor English: She no went to the market. Corrected English:", "def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n \n else:\n results.extend(list2[i+1:])\n return results", "def remove_non_ascii(s: str) -> str:\n \"\"\" \nprint(remove_non_ascii('afkdj$$('))", ] def process_example(args): for x in generate_both(args): pass return x css = ".generating {visibility: hidden}" monospace_css = """ #q-input textarea { font-family: monospace, 'Consolas', Courier, monospace; } """ css += share_btn_css + monospace_css + ".gradio-container {color: black}" description = f""" Phind VS WizardCoder Playground
""" with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo: with gr.Column(): gr.Markdown(description) with gr.Row(): with gr.Column(): instruction = gr.Textbox( placeholder="Enter your code here", lines=5, label="Input", elem_id="q-input", ) submit = gr.Button("Generate", variant="primary") with gr.Row(): output_1 = gr.Code(elem_id="q-output", lines=30, label=f"{model_id_1} Output", language="python") output_2 = gr.Code(elem_id="q-output", lines=30, label=f"{model_id_2} Output", language="python") with gr.Row(): with gr.Column(): with gr.Accordion("Advanced settings", open=False): with gr.Row(): column_1, column_2 = gr.Column(), gr.Column() with column_1: temperature = gr.Slider( label="Temperature", value=0.1, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ) max_new_tokens = gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=8192, step=64, interactive=True, info="The maximum numbers of new tokens", ) with column_2: top_p = gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ) repetition_penalty = gr.Slider( label="Repetition penalty", value=1.05, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) gr.Examples( examples=examples, inputs=[instruction], cache_examples=False, fn=process_example, outputs=[output_1], ) submit.click( generate_both, inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty], outputs=[output_1, output_2], ) demo.queue(concurrency_count=16).launch(debug=True)Compare python code generations from {model_id_1} (73.8% pass@1 on HumanEval) & {model_id_2} (73.2% pass@1 on HumanEval), which makes them surpass GPT4 (2023/03/15) on the same benchmark
Moreover, you can try those models on VSCode using HF Autocomplete extenson. Read more here.
This space is cloned from codellama/codellama-playground