Spaces:
Runtime error
Runtime error
Michael Scheiwiller
commited on
Commit
·
f1690e5
1
Parent(s):
52336ed
fix: update code to use latest versions
Browse files
app.py
CHANGED
@@ -1,26 +1,46 @@
|
|
1 |
# created with great guidance from https://github.com/NimaBoscarino
|
2 |
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
import kornia as K
|
6 |
from kornia.core import Tensor
|
|
|
7 |
|
8 |
|
9 |
-
def filters(file, box_blur, blur_pool2d, gaussian_blur2d, max_blur_pool2d, median_blur):
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
img = img[None] # 1xCxHxW / fp32 / [0, 1]
|
13 |
|
14 |
# apply tensor image enhancement
|
15 |
x_out: Tensor = K.filters.box_blur(img, (int(box_blur), int(box_blur)))
|
16 |
x_out = K.filters.blur_pool2d(x_out, int(blur_pool2d))
|
17 |
-
x_out = K.filters.gaussian_blur2d(x_out,
|
18 |
-
|
19 |
-
|
20 |
x_out = K.filters.max_blur_pool2d(x_out, int(max_blur_pool2d))
|
21 |
x_out = K.filters.median_blur(x_out, (int(median_blur), int(median_blur)))
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
examples = [
|
@@ -28,26 +48,19 @@ examples = [
|
|
28 |
["examples/kitty.jpg", 1, 1, 1, 1, 1],
|
29 |
]
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
gr.
|
39 |
-
gr.
|
40 |
-
gr.inputs.Slider(minimum=1, maximum=10, step=1, default=1, label="Blur Pool"),
|
41 |
-
gr.inputs.Slider(minimum=1, maximum=21, step=2, default=1, label="Gaussian Blur"),
|
42 |
-
gr.inputs.Slider(minimum=1, maximum=20, step=1, default=1, label="Max Pool"),
|
43 |
-
gr.inputs.Slider(minimum=1, maximum=5, step=2, default=1, label="Median Blur"),
|
44 |
],
|
45 |
-
"
|
46 |
examples=examples,
|
47 |
-
# title=title,
|
48 |
-
# description=description,
|
49 |
-
# article=article,
|
50 |
live=True
|
51 |
)
|
52 |
|
53 |
-
|
|
|
1 |
# created with great guidance from https://github.com/NimaBoscarino
|
2 |
|
3 |
+
import os
|
4 |
import gradio as gr
|
5 |
|
6 |
import kornia as K
|
7 |
from kornia.core import Tensor
|
8 |
+
import torch
|
9 |
|
10 |
|
11 |
+
def filters(file, box_blur, blur_pool2d, gaussian_blur2d, max_blur_pool2d, median_blur):
|
12 |
+
"""
|
13 |
+
Apply a series of image filters to the input image.
|
14 |
+
"""
|
15 |
+
# Handle filepath string and file object
|
16 |
+
if isinstance(file, str):
|
17 |
+
filepath = file
|
18 |
+
else:
|
19 |
+
filepath = file.name
|
20 |
+
|
21 |
+
# Check if file exists
|
22 |
+
if not os.path.exists(filepath):
|
23 |
+
raise ValueError(f"File not found: {filepath}")
|
24 |
+
# load the image using the rust backend
|
25 |
+
img: Tensor = K.io.load_image(filepath, K.io.ImageLoadType.RGB32)
|
26 |
img = img[None] # 1xCxHxW / fp32 / [0, 1]
|
27 |
|
28 |
# apply tensor image enhancement
|
29 |
x_out: Tensor = K.filters.box_blur(img, (int(box_blur), int(box_blur)))
|
30 |
x_out = K.filters.blur_pool2d(x_out, int(blur_pool2d))
|
31 |
+
x_out = K.filters.gaussian_blur2d(x_out,
|
32 |
+
(int(gaussian_blur2d), int(gaussian_blur2d)),
|
33 |
+
(float(gaussian_blur2d), float(gaussian_blur2d)))
|
34 |
x_out = K.filters.max_blur_pool2d(x_out, int(max_blur_pool2d))
|
35 |
x_out = K.filters.median_blur(x_out, (int(median_blur), int(median_blur)))
|
36 |
|
37 |
+
# Ensure output is in the range [0, 1]
|
38 |
+
x_out = torch.clamp(x_out, 0, 1)
|
39 |
+
|
40 |
+
# Convert to numpy array and scale to [0, 255]
|
41 |
+
output_image = (x_out.squeeze().permute(1, 2, 0).cpu().numpy() * 255).astype('uint8')
|
42 |
+
|
43 |
+
return output_image
|
44 |
|
45 |
|
46 |
examples = [
|
|
|
48 |
["examples/kitty.jpg", 1, 1, 1, 1, 1],
|
49 |
]
|
50 |
|
51 |
+
demo = gr.Interface(
|
52 |
+
fn=filters,
|
53 |
+
inputs=[
|
54 |
+
gr.Image(type="filepath", label="Input Image"),
|
55 |
+
gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Box Blur"),
|
56 |
+
gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Blur Pool"),
|
57 |
+
gr.Slider(minimum=1, maximum=21, step=2, value=1, label="Gaussian Blur"),
|
58 |
+
gr.Slider(minimum=1, maximum=20, step=1, value=1, label="Max Pool"),
|
59 |
+
gr.Slider(minimum=1, maximum=5, step=2, value=1, label="Median Blur"),
|
|
|
|
|
|
|
|
|
60 |
],
|
61 |
+
outputs=gr.Image(type="numpy", label="Output Image"),
|
62 |
examples=examples,
|
|
|
|
|
|
|
63 |
live=True
|
64 |
)
|
65 |
|
66 |
+
demo.launch()
|