Spaces:
Runtime error
Runtime error
Upload 21 files
Browse files- .gitattributes +7 -0
- app.py +173 -0
- b_word.txt +2 -0
- calm.wav +3 -0
- classify.py +66 -0
- data/chew1.wav +3 -0
- data/clears_throat1.wav +0 -0
- data/mouth_sounds1.wav +0 -0
- data/pop1.wav +0 -0
- data/sigh1.wav +0 -0
- data/slurp1.wav +0 -0
- data/tapping1.wav +3 -0
- data/theeStallion1.wav +3 -0
- data/trump1.wav +3 -0
- data/trump2.wav +3 -0
- expletives.txt +15 -0
- hrv-breathing.gif +3 -0
- n_word.txt +9 -0
- packages.txt +1 -0
- replace_explitives.py +44 -0
- requirements.txt +11 -0
- toxicity.py +141 -0
.gitattributes
CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
calm.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
data/chew1.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
+
data/tapping1.wav filter=lfs diff=lfs merge=lfs -text
|
39 |
+
data/theeStallion1.wav filter=lfs diff=lfs merge=lfs -text
|
40 |
+
data/trump1.wav filter=lfs diff=lfs merge=lfs -text
|
41 |
+
data/trump2.wav filter=lfs diff=lfs merge=lfs -text
|
42 |
+
hrv-breathing.gif filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import whisper
|
3 |
+
import evaluate
|
4 |
+
from evaluate.utils import launch_gradio_widget
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
import pandas as pd
|
8 |
+
import random
|
9 |
+
import classify
|
10 |
+
import replace_explitives
|
11 |
+
from whisper.model import Whisper
|
12 |
+
from whisper.tokenizer import get_tokenizer
|
13 |
+
from speechbrain.pretrained.interfaces import foreign_class
|
14 |
+
from transformers import AutoModelForSequenceClassification, pipeline, WhisperTokenizer, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
|
15 |
+
|
16 |
+
|
17 |
+
# pull in emotion detection
|
18 |
+
# --- Add element for specification
|
19 |
+
# pull in text classification
|
20 |
+
# --- Add custom labels
|
21 |
+
# --- Associate labels with radio elements
|
22 |
+
# add logic to initiate mock notificaiton when detected
|
23 |
+
# pull in misophonia-specific model
|
24 |
+
|
25 |
+
model_cache = {}
|
26 |
+
|
27 |
+
# Building prediction function for gradio
|
28 |
+
emo_dict = {
|
29 |
+
'sad': 'Sad',
|
30 |
+
'hap': 'Happy',
|
31 |
+
'ang': 'Anger',
|
32 |
+
'neu': 'Neutral'
|
33 |
+
}
|
34 |
+
|
35 |
+
# static classes for now, but it would be best ot have the user select from multiple, and to enter their own
|
36 |
+
class_options = {
|
37 |
+
"Racism": ["racism", "hate speech", "bigotry", "racially targeted", "racial slur", "ethnic slur", "ethnic hate", "pro-white nationalism"],
|
38 |
+
"LGBTQ+ Hate": ["gay slur", "trans slur", "homophobic slur", "transphobia", "anti-LBGTQ+"],
|
39 |
+
"Sexually Explicit": ["sexually explicit", "sexually coercive", "sexual exploitation", "vulgar", "raunchy", "sexist", "sexually demeaning", "sexual violence", "victim blaming"],
|
40 |
+
"Pregnancy Complications": ["miscarriage", "child loss", "child death", "abortion", "pregnancy", "childbirth", "baby shower", "postpartum"],
|
41 |
+
}
|
42 |
+
|
43 |
+
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
44 |
+
|
45 |
+
toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
|
46 |
+
emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
47 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
48 |
+
text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
49 |
+
|
50 |
+
def classify_emotion(audio):
|
51 |
+
#### Emotion classification ####
|
52 |
+
# EMO MODEL LINE emotion_classifier = foreign_class(source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")
|
53 |
+
out_prob, score, index, text_lab = emotion_classifier.classify_file(audio)
|
54 |
+
return emo_dict[text_lab[0]]
|
55 |
+
|
56 |
+
def slider_logic(slider):
|
57 |
+
threshold = 0
|
58 |
+
if slider == 1:
|
59 |
+
threshold = .90
|
60 |
+
elif slider == 2:
|
61 |
+
threshold = .80
|
62 |
+
elif slider == 3:
|
63 |
+
threshold = .60
|
64 |
+
elif slider == 4:
|
65 |
+
threshold = .50
|
66 |
+
elif slider == 5:
|
67 |
+
threshold = .40
|
68 |
+
else:
|
69 |
+
threshold = []
|
70 |
+
return threshold
|
71 |
+
|
72 |
+
# Create a Gradio interface with audio file and text inputs
|
73 |
+
def classify_toxicity(audio_file, classify_anxiety, emo_class, explitive_selection, slider):
|
74 |
+
|
75 |
+
# Transcribe the audio file using Whisper ASR
|
76 |
+
transcribed_text = pipe(audio_file)["text"]
|
77 |
+
|
78 |
+
## SLIDER ##
|
79 |
+
threshold = slider_logic(slider)
|
80 |
+
|
81 |
+
#------- explitive call ---------------
|
82 |
+
|
83 |
+
if replace_explitives != None and emo_class == None:
|
84 |
+
transcribed_text = replace_explitives.sub_explitives(transcribed_text, explitive_selection)
|
85 |
+
|
86 |
+
#### Toxicity Classifier ####
|
87 |
+
|
88 |
+
# TOX MODEL LINE toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target")
|
89 |
+
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
|
90 |
+
|
91 |
+
toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
|
92 |
+
|
93 |
+
toxicity_score = toxicity_results["toxicity"][0]
|
94 |
+
print(toxicity_score)
|
95 |
+
|
96 |
+
# emo call
|
97 |
+
if emo_class != None:
|
98 |
+
classify_emotion(audio_file)
|
99 |
+
|
100 |
+
#### Text classification #####
|
101 |
+
if classify_anxiety != None:
|
102 |
+
# DEVICE LINE device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
103 |
+
|
104 |
+
# CLASSIFICATION LINE text_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
105 |
+
|
106 |
+
sequence_to_classify = transcribed_text
|
107 |
+
print(classify_anxiety, class_options)
|
108 |
+
candidate_labels = class_options.get(classify_anxiety, [])
|
109 |
+
# classification_output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
110 |
+
classification_output = text_classifier(sequence_to_classify, candidate_labels, multi_label=True)
|
111 |
+
print("class output ", type(classification_output))
|
112 |
+
# classification_df = pd.DataFrame.from_dict(classification_output)
|
113 |
+
print("keys ", classification_output.keys())
|
114 |
+
|
115 |
+
# formatted_classification_output = "\n".join([f"{key}: {value}" for key, value in classification_output.items()])
|
116 |
+
# label_score_pairs = [(label, score) for label, score in zip(classification_output['labels'], classification_output['scores'])]
|
117 |
+
label_score_dict = {label: score for label, score in zip(classification_output['labels'], classification_output['scores'])}
|
118 |
+
k = max(label_score_dict, key=label_score_dict.get)
|
119 |
+
print("k keys: ", k)
|
120 |
+
maxval = label_score_dict[k]
|
121 |
+
print("max value: ", maxval)
|
122 |
+
topScore = ""
|
123 |
+
affirm = ""
|
124 |
+
if maxval > threshold:
|
125 |
+
print("Toxic")
|
126 |
+
affirm = positive_affirmations()
|
127 |
+
topScore = maxval
|
128 |
+
else:
|
129 |
+
print("Not Toxic")
|
130 |
+
affirm = ""
|
131 |
+
topScore = maxval
|
132 |
+
else:
|
133 |
+
topScore = ""
|
134 |
+
affirm = ""
|
135 |
+
if toxicity_score > threshold:
|
136 |
+
affirm = positive_affirmations()
|
137 |
+
topScore = toxicity_score
|
138 |
+
else:
|
139 |
+
affirm = ""
|
140 |
+
topScore = toxicity_score
|
141 |
+
label_score_dict = {"toxicity" : toxicity_score}
|
142 |
+
|
143 |
+
return transcribed_text, topScore, label_score_dict, affirm
|
144 |
+
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
145 |
+
|
146 |
+
def positive_affirmations():
|
147 |
+
affirmations = [
|
148 |
+
"I have survived my anxiety before and I will survive again now",
|
149 |
+
"I am not in danger; I am just uncomfortable; this too will pass",
|
150 |
+
"I forgive and release the past and look forward to the future",
|
151 |
+
"I can't control what other people say but I can control my breathing and my response"
|
152 |
+
]
|
153 |
+
selected_affirm = random.choice(affirmations)
|
154 |
+
return selected_affirm
|
155 |
+
|
156 |
+
with gr.Blocks() as iface:
|
157 |
+
show_state = gr.State([])
|
158 |
+
with gr.Column():
|
159 |
+
anxiety_class = gr.Radio(label="Specify Subclass", choices=["Racism", "LGBTQ+ Hate", "Sexually Explicit", "Pregnancy Complications"])
|
160 |
+
explit_preference = gr.Radio(choices=["N-Word", "B-Word", "All Explitives"], label="Words to omit from general anxiety classes", info="certain words may be acceptible within certain contects for given groups of people, and some people may be unbothered by explitives broadly speaking.")
|
161 |
+
emo_class = gr.Radio(choices=["negaitve emotionality"], label="Negative Emotionality", info="Select if you would like explitives to be considered anxiety-indiucing in the case of anger/ negative emotionality.")
|
162 |
+
sense_slider = gr.Slider(minimum=1, maximum=5, step=1.0, label="How readily do you want the tool to intervene? 1 = in extreme cases and 5 = at every opportunity")
|
163 |
+
with gr.Column():
|
164 |
+
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
165 |
+
submit_btn = gr.Button(label="Run")
|
166 |
+
with gr.Column():
|
167 |
+
out_text = gr.Textbox(label="Transcribed Audio")
|
168 |
+
out_val = gr.Textbox(label="Overall Toxicity")
|
169 |
+
out_affirm = gr.Textbox(label="Intervention")
|
170 |
+
out_class = gr.Label(label="Toxicity Class Breakdown")
|
171 |
+
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, anxiety_class, emo_class, explit_preference, sense_slider], outputs=[out_text, out_val, out_class, out_affirm])
|
172 |
+
|
173 |
+
iface.launch()
|
b_word.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
bitch
|
2 |
+
bitches
|
calm.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bafc436a822d1e3670b457660087b3caf518e9d0d83d8c999bc642a5166f4b1
|
3 |
+
size 15916220
|
classify.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from whisper.audio import N_FRAMES, N_MELS, log_mel_spectrogram, pad_or_trim
|
6 |
+
from whisper.model import Whisper
|
7 |
+
from whisper.tokenizer import Tokenizer
|
8 |
+
|
9 |
+
|
10 |
+
@torch.no_grad()
|
11 |
+
def calculate_audio_features(audio_path: Optional[str], model: Whisper) -> torch.Tensor:
|
12 |
+
if audio_path is None:
|
13 |
+
segment = torch.zeros((N_MELS, N_FRAMES), dtype=torch.float32).to(model.device)
|
14 |
+
else:
|
15 |
+
mel = log_mel_spectrogram(audio_path)
|
16 |
+
segment = pad_or_trim(mel, N_FRAMES).to(model.device)
|
17 |
+
return model.embed_audio(segment.unsqueeze(0))
|
18 |
+
|
19 |
+
|
20 |
+
@torch.no_grad()
|
21 |
+
def calculate_average_logprobs(
|
22 |
+
model: Whisper,
|
23 |
+
audio_features: torch.Tensor,
|
24 |
+
class_names: List[str],
|
25 |
+
tokenizer: Tokenizer,
|
26 |
+
) -> torch.Tensor:
|
27 |
+
initial_tokens = (
|
28 |
+
torch.tensor(tokenizer.sot_sequence_including_notimestamps).unsqueeze(0).to(model.device)
|
29 |
+
)
|
30 |
+
eot_token = torch.tensor([tokenizer.eot]).unsqueeze(0).to(model.device)
|
31 |
+
|
32 |
+
average_logprobs = torch.zeros(len(class_names))
|
33 |
+
for i, class_name in enumerate(class_names):
|
34 |
+
class_name_tokens = (
|
35 |
+
torch.tensor(tokenizer.encode(" " + class_name)).unsqueeze(0).to(model.device)
|
36 |
+
)
|
37 |
+
input_tokens = torch.cat([initial_tokens, class_name_tokens, eot_token], dim=1)
|
38 |
+
|
39 |
+
logits = model.logits(input_tokens, audio_features) # (1, T, V)
|
40 |
+
logprobs = F.log_softmax(logits, dim=-1).squeeze(0) # (T, V)
|
41 |
+
logprobs = logprobs[len(tokenizer.sot_sequence_including_notimestamps) - 1 : -1] # (T', V)
|
42 |
+
logprobs = torch.gather(logprobs, dim=-1, index=class_name_tokens.view(-1, 1)) # (T', 1)
|
43 |
+
average_logprob = logprobs.mean().item()
|
44 |
+
average_logprobs[i] = average_logprob
|
45 |
+
|
46 |
+
return average_logprobs
|
47 |
+
|
48 |
+
|
49 |
+
def calculate_internal_lm_average_logprobs(
|
50 |
+
model: Whisper,
|
51 |
+
class_names: List[str],
|
52 |
+
tokenizer: Tokenizer,
|
53 |
+
verbose: bool = False,
|
54 |
+
) -> torch.Tensor:
|
55 |
+
audio_features_from_empty_input = calculate_audio_features(None, model)
|
56 |
+
average_logprobs = calculate_average_logprobs(
|
57 |
+
model=model,
|
58 |
+
audio_features=audio_features_from_empty_input,
|
59 |
+
class_names=class_names,
|
60 |
+
tokenizer=tokenizer,
|
61 |
+
)
|
62 |
+
if verbose:
|
63 |
+
print("Internal LM average log probabilities for each class:")
|
64 |
+
for i, class_name in enumerate(class_names):
|
65 |
+
print(f" {class_name}: {average_logprobs[i]:.3f}")
|
66 |
+
return average_logprobs
|
data/chew1.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91ded13633e05d45c791366de676d09c9eb2f4b51979e211112e734d97cfdf08
|
3 |
+
size 5120104
|
data/clears_throat1.wav
ADDED
Binary file (180 kB). View file
|
|
data/mouth_sounds1.wav
ADDED
Binary file (446 kB). View file
|
|
data/pop1.wav
ADDED
Binary file (89.4 kB). View file
|
|
data/sigh1.wav
ADDED
Binary file (485 kB). View file
|
|
data/slurp1.wav
ADDED
Binary file (596 kB). View file
|
|
data/tapping1.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9506ae17e7176ef99a36a3f556f9f45837f804e77a6b0013a38470e73f8ed5e4
|
3 |
+
size 2958378
|
data/theeStallion1.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d347f0917b4989ebe491bb96955d31afcf3b31e6480d43136a7ff3bffd8dd9da
|
3 |
+
size 2736184
|
data/trump1.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3952dd160ff5031da8fab133d6d685bbcdc190bb34fa0ee7c75b7c7e5ff9a8ea
|
3 |
+
size 10700952
|
data/trump2.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2ee9ec1a06544428bf8c0f66eda962533e7e70467a0b30492dfbfd1d30c0981
|
3 |
+
size 7329432
|
expletives.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
shit
|
2 |
+
fuck
|
3 |
+
fucked
|
4 |
+
damn
|
5 |
+
damned
|
6 |
+
goddamn
|
7 |
+
goddmaned
|
8 |
+
crap
|
9 |
+
crapped
|
10 |
+
ass
|
11 |
+
asshole
|
12 |
+
bastard
|
13 |
+
bastards
|
14 |
+
piss
|
15 |
+
pissed
|
hrv-breathing.gif
ADDED
Git LFS Details
|
n_word.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
nigga
|
2 |
+
niggas
|
3 |
+
nigg
|
4 |
+
nig
|
5 |
+
niggs
|
6 |
+
nigs
|
7 |
+
nigger
|
8 |
+
niggers
|
9 |
+
niggaz
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
replace_explitives.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import regex as re
|
2 |
+
import nltk
|
3 |
+
|
4 |
+
def load_words_from_file(file_path):
|
5 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
6 |
+
words = [line.strip() for line in f.readlines()]
|
7 |
+
return words
|
8 |
+
|
9 |
+
def sub_explitives(textfile, selection):
|
10 |
+
|
11 |
+
replacetext = "person"
|
12 |
+
|
13 |
+
# Load target words from text files
|
14 |
+
b_word_list = load_words_from_file("b_word.txt")
|
15 |
+
n_word_list = load_words_from_file("n_word.txt")
|
16 |
+
expletives_list = load_words_from_file("expletives.txt")
|
17 |
+
|
18 |
+
# text = word_tokenize(textfile)
|
19 |
+
# print(text)
|
20 |
+
# sentences = sent_tokenize(textfile)
|
21 |
+
|
22 |
+
if selection == "B-Word":
|
23 |
+
target_word = b_word_list
|
24 |
+
elif selection == "N-Word":
|
25 |
+
target_word = n_word_list
|
26 |
+
elif selection == "All Explitives":
|
27 |
+
target_word = expletives_list
|
28 |
+
else:
|
29 |
+
target_word = []
|
30 |
+
|
31 |
+
print("selection:", selection, "target_word:", target_word)
|
32 |
+
lines = textfile.split('\n')
|
33 |
+
|
34 |
+
if target_word:
|
35 |
+
print("target word was found, ", target_word)
|
36 |
+
print(textfile)
|
37 |
+
for i, line in enumerate(lines):
|
38 |
+
for word in target_word:
|
39 |
+
pattern = r"\b" + re.escape(word) + r"\b"
|
40 |
+
# textfile = re.sub(target_word, replacetext, textfile, flags=re.IGNORECASE)
|
41 |
+
lines[i] = re.sub(pattern, replacetext, lines[i], flags=re.IGNORECASE)
|
42 |
+
|
43 |
+
textfile = '\n'.join(lines)
|
44 |
+
return textfile
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@775555d80af30d83dc6e9f42051840d29a34f31b
|
2 |
+
git+https://github.com/openai/whisper.git
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
speechbrain
|
6 |
+
torchaudio
|
7 |
+
git+https://github.com/openai/whisper.git
|
8 |
+
tqdm
|
9 |
+
gradio==3.14.0
|
10 |
+
regex
|
11 |
+
nltk
|
toxicity.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
""" Toxicity detection measurement. """
|
16 |
+
|
17 |
+
import datasets
|
18 |
+
from transformers import pipeline
|
19 |
+
|
20 |
+
import evaluate
|
21 |
+
|
22 |
+
|
23 |
+
logger = evaluate.logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
_CITATION = """
|
27 |
+
@inproceedings{vidgen2021lftw,
|
28 |
+
title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection},
|
29 |
+
author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela},
|
30 |
+
booktitle={ACL},
|
31 |
+
year={2021}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
The toxicity measurement aims to quantify the toxicity of the input texts using a pretrained hate speech classification model.
|
37 |
+
"""
|
38 |
+
|
39 |
+
_KWARGS_DESCRIPTION = """
|
40 |
+
Compute the toxicity of the input sentences.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
`predictions` (list of str): prediction/candidate sentences
|
44 |
+
`toxic_label` (str) (optional): the toxic label that you want to detect, depending on the labels that the model has been trained on.
|
45 |
+
This can be found using the `id2label` function, e.g.:
|
46 |
+
model = AutoModelForSequenceClassification.from_pretrained("DaNLP/da-electra-hatespeech-detection")
|
47 |
+
print(model.config.id2label)
|
48 |
+
{0: 'not offensive', 1: 'offensive'}
|
49 |
+
In this case, the `toxic_label` would be 'offensive'.
|
50 |
+
`aggregation` (optional): determines the type of aggregation performed on the data. If set to `None`, the scores for each prediction are returned.
|
51 |
+
Otherwise:
|
52 |
+
- 'maximum': returns the maximum toxicity over all predictions
|
53 |
+
- 'ratio': the percentage of predictions with toxicity above a certain threshold.
|
54 |
+
`threshold`: (int) (optional): the toxicity detection to be used for calculating the 'ratio' aggregation, described above.
|
55 |
+
The default threshold is 0.5, based on the one established by [RealToxicityPrompts](https://arxiv.org/abs/2009.11462).
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
`toxicity`: a list of toxicity scores, one for each sentence in `predictions` (default behavior)
|
59 |
+
`max_toxicity`: the maximum toxicity over all scores (if `aggregation` = `maximum`)
|
60 |
+
`toxicity_ratio`": the percentage of predictions with toxicity >= 0.5 (if `aggregation` = `ratio`)
|
61 |
+
|
62 |
+
Examples:
|
63 |
+
|
64 |
+
Example 1 (default behavior):
|
65 |
+
>>> toxicity = evaluate.load("toxicity", module_type="measurement")
|
66 |
+
>>> input_texts = ["she went to the library", "he is a douchebag"]
|
67 |
+
>>> results = toxicity.compute(predictions=input_texts)
|
68 |
+
>>> print([round(s, 4) for s in results["toxicity"]])
|
69 |
+
[0.0002, 0.8564]
|
70 |
+
|
71 |
+
Example 2 (returns ratio of toxic sentences):
|
72 |
+
>>> toxicity = evaluate.load("toxicity", module_type="measurement")
|
73 |
+
>>> input_texts = ["she went to the library", "he is a douchebag"]
|
74 |
+
>>> results = toxicity.compute(predictions=input_texts, aggregation="ratio")
|
75 |
+
>>> print(results['toxicity_ratio'])
|
76 |
+
0.5
|
77 |
+
|
78 |
+
Example 3 (returns the maximum toxicity score):
|
79 |
+
|
80 |
+
>>> toxicity = evaluate.load("toxicity", module_type="measurement")
|
81 |
+
>>> input_texts = ["she went to the library", "he is a douchebag"]
|
82 |
+
>>> results = toxicity.compute(predictions=input_texts, aggregation="maximum")
|
83 |
+
>>> print(round(results['max_toxicity'], 4))
|
84 |
+
0.8564
|
85 |
+
|
86 |
+
Example 4 (uses a custom model):
|
87 |
+
|
88 |
+
>>> toxicity = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection')
|
89 |
+
>>> input_texts = ["she went to the library", "he is a douchebag"]
|
90 |
+
>>> results = toxicity.compute(predictions=input_texts, toxic_label='offensive')
|
91 |
+
>>> print([round(s, 4) for s in results["toxicity"]])
|
92 |
+
[0.0176, 0.0203]
|
93 |
+
"""
|
94 |
+
|
95 |
+
|
96 |
+
def toxicity(preds, toxic_classifier, toxic_label):
|
97 |
+
toxic_scores = []
|
98 |
+
if toxic_label not in toxic_classifier.model.config.id2label.values():
|
99 |
+
raise ValueError(
|
100 |
+
"The `toxic_label` that you specified is not part of the model labels. Run `model.config.id2label` to see what labels your model outputs."
|
101 |
+
)
|
102 |
+
|
103 |
+
for pred_toxic in toxic_classifier(preds):
|
104 |
+
hate_toxic = [r["score"] for r in pred_toxic if r["label"] == toxic_label][0]
|
105 |
+
toxic_scores.append(hate_toxic)
|
106 |
+
return toxic_scores
|
107 |
+
|
108 |
+
|
109 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
110 |
+
class Toxicity(evaluate.Measurement):
|
111 |
+
def _info(self):
|
112 |
+
return evaluate.MeasurementInfo(
|
113 |
+
module_type="measurement",
|
114 |
+
description=_DESCRIPTION,
|
115 |
+
citation=_CITATION,
|
116 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
117 |
+
features=datasets.Features(
|
118 |
+
{
|
119 |
+
"predictions": datasets.Value("string", id="sequence"),
|
120 |
+
}
|
121 |
+
),
|
122 |
+
codebase_urls=[],
|
123 |
+
reference_urls=[],
|
124 |
+
)
|
125 |
+
|
126 |
+
def _download_and_prepare(self, dl_manager):
|
127 |
+
if self.config_name == "default":
|
128 |
+
logger.warning("Using default facebook/roberta-hate-speech-dynabench-r4-target checkpoint")
|
129 |
+
model_name = "facebook/roberta-hate-speech-dynabench-r4-target"
|
130 |
+
else:
|
131 |
+
model_name = self.config_name
|
132 |
+
self.toxic_classifier = pipeline("text-classification", model=model_name, top_k=99999, truncation=True)
|
133 |
+
|
134 |
+
def _compute(self, predictions, aggregation="all", toxic_label="hate", threshold=0.5):
|
135 |
+
scores = toxicity(predictions, self.toxic_classifier, toxic_label)
|
136 |
+
if aggregation == "ratio":
|
137 |
+
return {"toxicity_ratio": sum(i >= threshold for i in scores) / len(scores)}
|
138 |
+
elif aggregation == "maximum":
|
139 |
+
return {"max_toxicity": max(scores)}
|
140 |
+
else:
|
141 |
+
return {"toxicity": scores}
|