hyomin commited on
Commit
3f6e3a1
·
1 Parent(s): 0964dff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -20,7 +20,7 @@ def is_false_alarm(code_text):
20
  code_text = re.sub('(\\\\n)+', '\\n', code_text)
21
 
22
  # 1. CFA-CodeBERTa-small.pt -> CodeBERTa-small-v1 finetunig model
23
- path = os.getcwd() + '\models\CFA-CodeBERTa-small.pt'
24
  tokenizer = AutoTokenizer.from_pretrained("huggingface/CodeBERTa-small-v1")
25
  input_ids = tokenizer.encode(
26
  code_text, max_length=512, truncation=True, padding='max_length')
@@ -32,7 +32,7 @@ def is_false_alarm(code_text):
32
  # model(input_ids)[0].argmax().detach().cpu().numpy().item()
33
 
34
  # 2. CFA-codebert-c.pt -> codebert-c finetuning model
35
- path = os.getcwd() + '\models\CFA-codebert-c.pt'
36
  tokenizer = AutoTokenizer.from_pretrained(path)
37
  input_ids = tokenizer(code_text, padding=True, max_length=512,
38
  truncation=True, return_token_type_ids=True)['input_ids']
@@ -43,7 +43,7 @@ def is_false_alarm(code_text):
43
  pred_2 = model(input_ids)[0].detach().cpu().numpy()[0]
44
 
45
  # 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model
46
- path = os.getcwd() + '\models\CFA-codebert-c-v2.pt'
47
  tokenizer = RobertaTokenizer.from_pretrained(path)
48
  input_ids = tokenizer(code_text, padding=True, max_length=512,
49
  truncation=True, return_token_type_ids=True)['input_ids']
@@ -54,7 +54,7 @@ def is_false_alarm(code_text):
54
  pred_3 = model(input_ids)[0].detach().cpu().numpy()
55
 
56
  # 4. codeT5 finetuning model
57
- path = os.getcwd() + '\models\CFA-codeT5'
58
  model_params = {
59
  # model_type: t5-base/t5-large
60
  "MODEL": path,
 
20
  code_text = re.sub('(\\\\n)+', '\\n', code_text)
21
 
22
  # 1. CFA-CodeBERTa-small.pt -> CodeBERTa-small-v1 finetunig model
23
+ path = os.getcwd() + '/models/CFA-CodeBERTa-small.pt'
24
  tokenizer = AutoTokenizer.from_pretrained("huggingface/CodeBERTa-small-v1")
25
  input_ids = tokenizer.encode(
26
  code_text, max_length=512, truncation=True, padding='max_length')
 
32
  # model(input_ids)[0].argmax().detach().cpu().numpy().item()
33
 
34
  # 2. CFA-codebert-c.pt -> codebert-c finetuning model
35
+ path = os.getcwd() + '/models/CFA-codebert-c.pt'
36
  tokenizer = AutoTokenizer.from_pretrained(path)
37
  input_ids = tokenizer(code_text, padding=True, max_length=512,
38
  truncation=True, return_token_type_ids=True)['input_ids']
 
43
  pred_2 = model(input_ids)[0].detach().cpu().numpy()[0]
44
 
45
  # 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model
46
+ path = os.getcwd() + '/models/CFA-codebert-c-v2.pt'
47
  tokenizer = RobertaTokenizer.from_pretrained(path)
48
  input_ids = tokenizer(code_text, padding=True, max_length=512,
49
  truncation=True, return_token_type_ids=True)['input_ids']
 
54
  pred_3 = model(input_ids)[0].detach().cpu().numpy()
55
 
56
  # 4. codeT5 finetuning model
57
+ path = os.getcwd() + '/models/CFA-codeT5'
58
  model_params = {
59
  # model_type: t5-base/t5-large
60
  "MODEL": path,