Spaces:
Sleeping
Sleeping
vukadinovic936
commited on
Commit
·
a47a354
1
Parent(s):
83fd9be
added generated file
Browse files- Dockerfile +7 -1
- app.py +80 -5
Dockerfile
CHANGED
@@ -5,7 +5,13 @@ WORKDIR /data
|
|
5 |
COPY requirements.txt ./
|
6 |
RUN pip install --no-cache-dir -r requirements.txt
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
10 |
COPY . .
|
11 |
CMD ["streamlit", "run", "app.py", "--server.port", "7860"]
|
|
|
5 |
COPY requirements.txt ./
|
6 |
RUN pip install --no-cache-dir -r requirements.txt
|
7 |
|
8 |
+
RUN apt-get update && \
|
9 |
+
apt-get install -y libglib2.0-0 && \
|
10 |
+
apt-get install libgl1-mesa-glx && \
|
11 |
+
apt-get install -y ffmpeg && \
|
12 |
+
apt-get clean && \
|
13 |
+
rm -rf /var/lib/apt/lists/*
|
14 |
|
15 |
+
EXPOSE 7860
|
16 |
COPY . .
|
17 |
CMD ["streamlit", "run", "app.py", "--server.port", "7860"]
|
app.py
CHANGED
@@ -1,12 +1,87 @@
|
|
1 |
import streamlit as st
|
2 |
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def check_gpu():
|
5 |
return tf.test.is_gpu_available(cuda_only=False, min_cuda_compute_capability=None)
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import tensorflow as tf
|
3 |
+
import pickle
|
4 |
+
import numpy as np
|
5 |
+
from pathlib import Path
|
6 |
+
import dnnlib
|
7 |
+
from dnnlib import tflib
|
8 |
+
import cv2
|
9 |
+
import os
|
10 |
+
import subprocess
|
11 |
|
12 |
def check_gpu():
|
13 |
return tf.test.is_gpu_available(cuda_only=False, min_cuda_compute_capability=None)
|
14 |
|
15 |
+
model_path = 'best_net.pkl'
|
16 |
+
#define load model functions
|
17 |
+
_cached_networks = dict()
|
18 |
+
def load_networks(path):
|
19 |
+
if path in _cached_networks:
|
20 |
+
return _cached_networks[path]
|
21 |
+
stream = open(path, 'rb')
|
22 |
+
tflib.init_tf()
|
23 |
+
with stream:
|
24 |
+
G, D, Gs = pickle.load(stream, encoding='latin1')
|
25 |
+
_cached_networks[path] = G, D, Gs
|
26 |
+
return G, D, Gs
|
27 |
|
28 |
+
# Code to load the StyleGAN2 Model
|
29 |
+
def load_model():
|
30 |
+
_G, _D, Gs = load_networks(model_path)
|
31 |
+
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
|
32 |
+
Gs_kwargs = dnnlib.EasyDict()
|
33 |
+
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
|
34 |
+
Gs_kwargs.randomize_noise = False
|
35 |
+
return Gs, noise_vars, Gs_kwargs
|
36 |
+
#define helper functions
|
37 |
+
def get_control_latent_vectors(path):
|
38 |
+
files = [x for x in Path(path).iterdir() if str(x).endswith('.npy')]
|
39 |
+
latent_vectors = {f.name[:-4]:np.load(f) for f in files}
|
40 |
+
return latent_vectors
|
41 |
+
|
42 |
+
#load latent directions
|
43 |
+
latent_controls = get_control_latent_vectors('trajectories/')
|
44 |
+
|
45 |
+
def generate_image_from_projected_latents(latent_vector):
|
46 |
+
images = Gs.components.synthesis.run(latent_vector, **Gs_kwargs)
|
47 |
+
return images
|
48 |
+
|
49 |
+
|
50 |
+
def frame_to_frame(latent_code):
|
51 |
+
modified_latent_code = np.copy(latent_code)
|
52 |
+
full_video = [generate_image_from_projected_latents(modified_latent_code)]
|
53 |
+
for i in range(49):
|
54 |
+
modified_latent_code = modified_latent_code + latent_controls[f'{i}{i+1}']
|
55 |
+
ims = generate_image_from_projected_latents(modified_latent_code)
|
56 |
+
full_video.append(ims)
|
57 |
+
return np.array(full_video).squeeze()
|
58 |
+
|
59 |
+
#load the model
|
60 |
+
Gs, noise_vars, Gs_kwargs = load_model()
|
61 |
+
#select a random latent code
|
62 |
+
rnd = np.random.RandomState(3)
|
63 |
+
z = rnd.randn(1, *Gs.input_shape[1:])
|
64 |
+
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]
|
65 |
+
tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars})
|
66 |
+
random_img_latent_code = Gs.components.mapping.run(z,None)
|
67 |
+
|
68 |
+
#make it be ED frame
|
69 |
+
random_img_latent_code -= 0.7*latent_controls['time']
|
70 |
+
vid = frame_to_frame(random_img_latent_code)
|
71 |
+
|
72 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4
|
73 |
+
temp_video_path="output.mp4"
|
74 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, 20.0, (256, 256), isColor=False)
|
75 |
+
|
76 |
+
for i in range(vid.shape[0]):
|
77 |
+
frame = vid[i]
|
78 |
+
out.write(frame)
|
79 |
+
out.release()
|
80 |
+
out_path = "fixed_out.mp4"
|
81 |
+
command = ["ffmpeg", "-i", temp_video_path, "-vcodec", "libx264", out_path]
|
82 |
+
subprocess.run(command)
|
83 |
+
|
84 |
+
st.video(out_path)
|
85 |
+
|
86 |
+
os.remove(temp_video_path)
|
87 |
+
os.remove(out_path)
|