""" Run qwen 7b chat. transformers 4.31.0 import torch torch.cuda.empty_cache() model.chat( tokenizer: transformers.tokenization_utils.PreTrainedTokenizer, query: str, history: Optional[List[Tuple[str, str]]], system: str = 'You are a helpful assistant.', append_history: bool = True, stream: Optional[bool] = , stop_words_ids: Optional[List[List[int]]] = None, **kwargs) -> Tuple[str, List[Tuple[str, str]]] ) model.generation_config GenerationConfig { "chat_format": "chatml", "do_sample": true, "eos_token_id": 151643, "max_new_tokens": 512, "max_window_size": 6144, "pad_token_id": 151643, "top_k": 0, "top_p": 0.5, "transformers_version": "4.31.0", "trust_remote_code": true } """ # pylint: disable=line-too-long, invalid-name, no-member, redefined-outer-name, missing-function-docstring, missing-class-docstring, broad-except, import gc import os import subprocess as sp import sys import time from collections import deque from dataclasses import asdict, dataclass from textwrap import dedent from types import SimpleNamespace from typing import List, Optional import gradio as gr import rich import torch from loguru import logger from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig from example_list import css, example_list if not torch.cuda.is_available(): raise gr.Error("torch.cuda.is_available() is False, cant continue...") os.environ["TZ"] = "Asia/Shanghai" try: time.tzset() # type: ignore # pylint: disable=no-member except Exception: # Windows logger.warning("Windows, cant run time.tzset()") model_name = "tangger/Qwen-7B-Chat" # try model_name = "Qwen/Qwen-7B-Chat" # gone! tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) n_gpus = torch.cuda.device_count() try: _ = f"{int(torch.cuda.mem_get_info()[0]/1024**3)-2}GB" except AssertionError: _ = 0 max_memory = {i: _ for i in range(n_gpus)} del sys # logger.remove() # to turn on trace # logger.add(sys.stderr, level="TRACE") # logger.trace(f"{chat_history=}") def gen_model(model_name: str): model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, # device_map="auto", device_map={"": 0}, # load_in_4bit=True, load_in_8bit=True, max_memory=max_memory, fp16=True, torch_dtype=torch.float16, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = model.eval() model.generation_config = GenerationConfig.from_pretrained( model_name, trust_remote_code=True, ) return model def user_clear(message, chat_history): """Gen a response, clear message in user textbox.""" logger.debug(f"{message=}") try: chat_history.append([message, ""]) except Exception: chat_history = deque([message, ""], maxlen=5) logger.trace(f"{chat_history=}") return "", chat_history def user(message, chat_history): """Gen a response.""" logger.debug(f"{message=}") logger.trace(f"{chat_history=}") try: chat_history.append([message, ""]) except Exception: chat_history = deque([message, ""], maxlen=5) return message, chat_history # for rerun in tests model = None gc.collect() torch.cuda.empty_cache() if not torch.cuda.is_available(): # raise gr.Error("GPU not available, cant run. Turn on GPU and retry") raise SystemExit("GPU not available, cant run. Turn on GPU and retry") model = gen_model(model_name) def bot(chat_history, **kwargs): try: message = chat_history[-1][0] except Exception as exc: logger.error(f"{chat_history=}: {exc}") return chat_history logger.debug(f"{chat_history=}") try: _ = """ response, chat_history = model.chat( tokenizer, message, history=chat_history, temperature=0.7, repetition_penalty=1.2, # max_length=128, ) """ logger.debug("run model.chat...") model.generation_config.update(**kwargs) response, chat_history = model.chat( tokenizer, message, chat_history[:-1], # **kwargs, ) del response return chat_history except Exception as exc: logger.error(exc) chat_history[:-1].append(["message", str(exc)]) return chat_history def bot_stream(chat_history, **kwargs): logger.trace(f"{kwargs=}") # somehow, empty chat_history if chat_history is None or not chat_history: logger.trace(f" *** {chat_history=}") chat_history.append(["", ""]) try: message = chat_history[-1][0] except Exception as exc: logger.error(f"{chat_history=}: {exc}") raise gr.Error(f"{chat_history=}") # yield chat_history # for elm in model.chat_stream(tokenizer, message, chat_history): model.generation_config.update(**kwargs) response = "" for elm in model.chat_stream(tokenizer, message, chat_history): chat_history[-1] = [message, elm] response = elm yield chat_history logger.debug(f"{response=}") logger.debug(f"{model.generation_config=}") SYSTEM_PROMPT = "You are a helpful assistant." MAX_MAX_NEW_TOKENS = 2048 # sequence length 2048 MAX_NEW_TOKENS = 256 @dataclass class Config: max_new_tokens: int = MAX_NEW_TOKENS repetition_penalty: float = 1.1 temperature: float = 1.0 top_k: int = 0 top_p: float = 0.9 # stats_default = SimpleNamespace(llm=model, system_prompt=SYSTEM_PROMPT, config=Config()) stats_default = SimpleNamespace(llm=None, system_prompt=SYSTEM_PROMPT, config=Config()) # input max_new_tokens temperature repetition_penalty top_k top_p system_prompt history def api_fn( # pylint: disable=too-many-arguments input_text: Optional[str], # max_length: int = 256, max_new_tokens: int = stats_default.config.max_new_tokens, temperature: float = stats_default.config.temperature, repetition_penalty: float = stats_default.config.repetition_penalty, top_k: int = stats_default.config.top_k, top_p: int = stats_default.config.top_p, system_prompt: Optional[str] = None, history: Optional[List[str]] = None, ): if input_text is None: input_text = "" try: input_text = str(input_text).strip() except Exception as exc: logger.error(exc) input_text = "" if not input_text: return "" if history is None: history = [] try: temperature = float(temperature) except Exception: temperature = stats_default.config.temperature if system_prompt is None: system_prompt = stats_default.system_prompt # if max_length < 10: max_length = 4096 if max_new_tokens < 10: max_new_tokens = stats_default.config.max_new_tokens if top_p < 0.1 or top_p > 1: top_p = stats_default.config.top_p if temperature <= 0.5: temperature = stats_default.config.temperature _ = { "max_new_tokens": max_new_tokens, "temperature": temperature, "repetition_penalty": repetition_penalty, "top_k": top_k, "top_p": top_p, } model.generation_config.update(**_) try: res, _ = model.chat( tokenizer, input_text, history=history, # max_length=max_length, append_history=False, ) # logger.debug(f"{res=} \n{_=}") except Exception as exc: logger.error(f"{exc=}") res = str(exc) logger.debug(f"api {res=}") logger.debug(f"api {model.generation_config=}") return res theme = gr.themes.Soft(text_size="sm") with gr.Blocks( theme=theme, title=model_name.lower(), css=css, ) as block: stats = gr.State(stats_default) # would this reset model? model.generation_config = GenerationConfig.from_pretrained( model_name, trust_remote_code=True, ) config = asdict(stats.value.config) def bot_stream_state(chat_history): logger.trace(f"{chat_history=}") yield from bot_stream(chat_history, **config) with gr.Accordion("🎈 Info", open=False): gr.Markdown( dedent( f""" ## {model_name.lower()} * temperature range: .51 and up; higher temperature implies more randomness. Suggested temperature for chatting and creative writing is around 1.1 while it should be set to 0.51-1.0 for summarizing and translation. * Set `repetition_penalty` to 2.1 or higher for a chatty conversation (more unpredictable and undesirable output). Lower it to 1.1 or smaller if more focused anwsers are desired (for example for translations or fact-oriented queries). * Smaller `top_k` probably will result in smoothier sentences. (`top_k=0` is equivalent to `top_k` equal to very very big though.) Consult `transformers` documentation for more details. * An API is available at https://mikeee-qwen-7b-chat.hf.space/ that can be queried, e.g., in python ```python from gradio_client import Client client = Client("https://mikeee-qwen-7b-chat.hf.space/") result = client.predict( "你好!", # user prompt 256, # max_new_tokens 1.2, # temperature 1.1, # repetition_penalty 0, # top_k 0.9, # top_p "You are a helpful assistant.", # system_prompt None, # history api_name="/api" ) print(result) ``` or in javascript ```js import {{ client }} from "@gradio/client"; const app = await client("https://mikeee-qwen-7b-chat.hf.space/"); const result = await app.predict("api", [...]); console.log(result.data); ``` Check documentation and examples by clicking `Use via API` at the very bottom of [https://huggingface.co/spaces/mikeee/qwen-7b-chat](https://huggingface.co/spaces/mikeee/qwen-7b-chat).

Most examples are meant for another model. You probably should try to test some related prompts. System prompt can be changed in Advaned Options as well.""" ), elem_classes="xsmall", ) chatbot = gr.Chatbot(height=500, value=deque([], maxlen=5)) # type: ignore with gr.Row(): with gr.Column(scale=5): msg = gr.Textbox( label="Chat Message Box", placeholder="Ask me anything (press Shift+Enter or click Submit to send)", show_label=False, # container=False, lines=4, max_lines=30, show_copy_button=True, # ).style(container=False) ) with gr.Column(scale=1, min_width=50): with gr.Row(): submit = gr.Button("Submit", elem_classes="xsmall") stop = gr.Button("Stop", visible=True) clear = gr.Button("Clear History", visible=True) msg_submit_event = msg.submit( # fn=conversation.user_turn, fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True, show_progress="full", # api_name=None, ).then(bot_stream_state, chatbot, chatbot, queue=True) submit_click_event = submit.click( # fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg fn=user_clear, # clear msg inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True, show_progress="full", # api_name=None, ).then(bot_stream_state, chatbot, chatbot, queue=True) stop.click( fn=None, inputs=None, outputs=None, cancels=[msg_submit_event, submit_click_event], queue=False, ) clear.click(lambda: None, None, chatbot, queue=False) with gr.Accordion(label="Advanced Options", open=False): system_prompt = gr.Textbox( label="System prompt", value=stats_default.system_prompt, lines=3, visible=True, ) max_new_tokens = gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=stats_default.config.max_new_tokens, ) repetition_penalty = gr.Slider( label="Repetition penalty", minimum=0.1, maximum=40.0, step=0.1, value=stats_default.config.repetition_penalty, ) temperature = gr.Slider( label="Temperature", minimum=0.51, maximum=40.0, step=0.1, value=stats_default.config.temperature, ) top_p = gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=stats_default.config.top_p, ) top_k = gr.Slider( label="Top-k", minimum=0, maximum=1000, step=1, value=stats_default.config.top_k, ) def system_prompt_fn(system_prompt): stats.value.system_prompt = system_prompt logger.debug(f"{stats.value.system_prompt=}") def max_new_tokens_fn(max_new_tokens): stats.value.config.max_new_tokens = max_new_tokens logger.debug(f"{stats.value.config.max_new_tokens=}") def repetition_penalty_fn(repetition_penalty): stats.value.config.repetition_penalty = repetition_penalty logger.debug(f"{stats.value=}") def temperature_fn(temperature): stats.value.config.temperature = temperature logger.debug(f"{stats.value=}") def top_p_fn(top_p): stats.value.config.top_p = top_p logger.debug(f"{stats.value=}") def top_k_fn(top_k): stats.value.config.top_k = top_k logger.debug(f"{stats.value=}") system_prompt.change(system_prompt_fn, system_prompt) max_new_tokens.change(max_new_tokens_fn, max_new_tokens) repetition_penalty.change(repetition_penalty_fn, repetition_penalty) temperature.change(temperature_fn, temperature) top_p.change(top_p_fn, top_p) top_k.change(top_k_fn, top_k) def reset_fn(stats_): logger.debug("reset_fn") stats_ = gr.State(stats_default) logger.debug(f"{stats_.value=}") return ( stats_, stats_default.system_prompt, stats_default.config.max_new_tokens, stats_default.config.repetition_penalty, stats_default.config.temperature, stats_default.config.top_p, stats_default.config.top_k, ) reset_btn = gr.Button("Reset") reset_btn.click( reset_fn, stats, [ stats, system_prompt, max_new_tokens, repetition_penalty, temperature, top_p, top_k, ], ) with gr.Accordion("Example inputs", open=True): etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """ examples = gr.Examples( examples=example_list, inputs=[msg], examples_per_page=60, ) with gr.Accordion("Disclaimer", open=False): _ = model_name.lower() gr.Markdown( f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce " f"factually accurate information. {_} was trained on various public datasets; while great efforts " "have been taken to clean the pretraining data, it is possible that this model could generate lewd, " "biased, or otherwise offensive outputs.", elem_classes=["disclaimer"], ) with gr.Accordion("For Chat/Translation API", open=False, visible=False): input_text = gr.Text() api_history = gr.Chatbot(value=[]) api_btn = gr.Button("Go", variant="primary") out_text = gr.Text() # api_fn args order # input_text max_new_tokens temperature repetition_penalty top_k top_p system_prompt history api_btn.click( api_fn, [ input_text, max_new_tokens, temperature, repetition_penalty, top_k, top_p, system_prompt, api_history, # dont know how to pass this in gradio_client.Client calls ], out_text, api_name="api", ) if __name__ == "__main__": logger.info("Just record start time") ret = sp.run("nvidia-smi", capture_output=1, check=0, shell=1, encoding='utf8') if ret.stdout: rich.print(ret.stdout) if ret.stderr: rich.print("[red bold]" + ret.stdout) block.queue(max_size=8).launch(debug=True)