File size: 11,676 Bytes
42dc8e4
 
 
 
 
 
 
fa82d81
42dc8e4
2fe65b3
42dc8e4
 
 
 
 
 
 
 
 
34fa40f
f89f707
fa82d81
42dc8e4
 
 
2fe65b3
98a002e
f89f707
 
 
 
 
 
 
 
 
 
2fe65b3
 
98a002e
 
2fe65b3
98a002e
 
 
 
 
42dc8e4
f89f707
 
2fe65b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98a002e
42dc8e4
 
 
fa82d81
42dc8e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa82d81
 
42dc8e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89f707
 
42dc8e4
 
 
 
 
 
f89f707
 
42dc8e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89f707
 
 
 
 
42dc8e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa82d81
42dc8e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89f707
 
42dc8e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa82d81
 
cd38474
50f8511
 
 
 
4395d76
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""Run codes."""
# pylint: disable=line-too-long, broad-exception-caught, invalid-name, missing-function-docstring, too-many-instance-attributes, missing-class-docstring
# ruff: noqa: E501
import os
import platform
import random
import time
from dataclasses import asdict, dataclass, field
from pathlib import Path
from textwrap import dedent

# from types import SimpleNamespace
import gradio as gr
import psutil
from about_time import about_time
from ctransformers import AutoModelForCausalLM
from dl_hf_model import dl_hf_model
from loguru import logger

from examples_list import examples_list

url = "https://huggingface.co/TheBloke/llama-2-13B-Guanaco-QLoRA-GGML/blob/main/llama-2-13b-guanaco-qlora.ggmlv3.q4_K_S.bin"  # 8.14G

LLM = None

if "forindo" in platform.node():  # deploy 70b model locally
    # url = "https://huggingface.co/TheBloke/llama-2-70b-Guanaco-QLoRA-GGML/blob/main/llama-2-70b-guanaco-qlora.ggmlv3.q3_K_S.bin"  # 29.7G
    # model_loc = "/home/mu2018/github/langchain-llama-2-70b-guanaco-qlora-ggml/models/llama-2-70b-guanaco-qlora.ggmlv3.q3_K_S.bin"
    _ = """
    url = "https://huggingface.co/TheBloke/StableBeluga2-70B-GGML/blob/main/stablebeluga2-70b.ggmlv3.q3_K_S.bin"
    try:
        model_loc, file_size = dl_hf_model(url)
        logger.info(f"done load llm {model_loc=} {file_size=}G")
    except Exception as exc_:
        logger.error(exc_)
        raise SystemExit(1) from exc_
    # """
    model_loc = "models/stablebeluga2-70b.ggmlv3.q3_K_S.bin"
    assert Path(model_loc).exists(), f"Make sure {model_loc=} exists."
else:
    try:
        logger.debug(f" dl {url}")
        model_loc, file_size = dl_hf_model(url)
        logger.info(f"done load llm {model_loc=} {file_size=}G")
    except Exception as exc_:
        logger.error(exc_)
        raise SystemExit(1) from exc_

# raise SystemExit(0)

# Prompt template: Guanaco
# {past_history}
prompt_template = """You are a helpful assistant. Let's think step by step.
### Human:
{question}
### Assistant:"""
human_prefix = "### Human"
ai_prefix = "### Assistant"
stop_list = [f"{human_prefix}:"]

if "beluga" in model_loc.lower():
    prompt_template = dedent("""
    ### System:
    You are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can.
    Let's think step by step.

    ### User: {question}

    ### Assistant:
    """).lstrip()
    human_prefix = "### User"
    ai_prefix = "### Assistant"
    stop_list = [f"{human_prefix}:"]

_ = psutil.cpu_count(logical=False) - 1
cpu_count: int = int(_) if _ else 1
logger.debug(f"{cpu_count=}")


logger.debug(f"{model_loc=}")
LLM = AutoModelForCausalLM.from_pretrained(
    model_loc,
    model_type="llama",
    threads=cpu_count,
)

os.environ["TZ"] = "Asia/Shanghai"
try:
    time.tzset()  # type: ignore # pylint: disable=no-member
except Exception:
    # Windows
    logger.warning("Windows, cant run time.tzset()")


@dataclass
class GenerationConfig:
    temperature: float = 0.7
    top_k: int = 50
    top_p: float = 0.9
    repetition_penalty: float = 1.0
    max_new_tokens: int = 512
    seed: int = 42
    reset: bool = False
    stream: bool = True
    threads: int = cpu_count
    stop: list[str] = field(default_factory=lambda: stop_list)


def generate(
    question: str,
    llm=LLM,
    config: GenerationConfig = GenerationConfig(),
):
    """Run model inference, will return a Generator if streaming is true."""
    # _ = prompt_template.format(question=question)
    # print(_)

    prompt = prompt_template.format(question=question)

    return llm(
        prompt,
        **asdict(config),
    )


logger.debug(f"{asdict(GenerationConfig())=}")


def user(user_message, history):
    # return user_message, history + [[user_message, None]]
    if history is None:
        history = []
    history.append([user_message, None])
    return user_message, history  # keep user_message


def user1(user_message, history):
    # return user_message, history + [[user_message, None]]
    if history is None:
        history = []
    history.append([user_message, None])
    return "", history  # clear user_message


def bot_(history):
    user_message = history[-1][0]
    resp = random.choice(["How are you?", "I love you", "I'm very hungry"])
    bot_message = user_message + ": " + resp
    history[-1][1] = ""
    for character in bot_message:
        history[-1][1] += character
        time.sleep(0.02)
        yield history

    history[-1][1] = resp
    yield history


def bot(history):
    user_message = ""
    try:
        user_message = history[-1][0]
    except Exception as exc:
        logger.error(exc)
    response = []

    logger.debug(f"{user_message=}")

    with about_time() as atime:  # type: ignore
        flag = 1
        prefix = ""
        then = time.time()

        logger.debug("about to generate")

        config = GenerationConfig(reset=True)
        for elm in generate(user_message, config=config):
            if flag == 1:
                logger.debug("in the loop")
                prefix = f"({time.time() - then:.2f}s) "
                flag = 0
                print(prefix, end="", flush=True)
                logger.debug(f"{prefix=}")
            print(elm, end="", flush=True)
            # logger.debug(f"{elm}")

            response.append(elm)
            history[-1][1] = prefix + "".join(response)
            yield history

    _ = (
        f"(time elapsed: {atime.duration_human}, "  # type: ignore
        f"{atime.duration/len(''.join(response)):.2f}s/char)"  # type: ignore
    )

    history[-1][1] = "".join(response) + f"\n{_}"
    yield history


def predict_api(prompt):
    logger.debug(f"{prompt=}")
    try:
        # user_prompt = prompt
        config = GenerationConfig(
            temperature=0.2,
            top_k=10,
            top_p=0.9,
            repetition_penalty=1.0,
            max_new_tokens=512,  # adjust as needed
            seed=42,
            reset=True,  # reset history (cache)
            stream=False,
            # threads=cpu_count,
            # stop=prompt_prefix[1:2],
        )

        response = generate(
            prompt,
            config=config,
        )

        logger.debug(f"api: {response=}")
    except Exception as exc:
        logger.error(exc)
        response = f"{exc=}"
    # bot = {"inputs": [response]}
    # bot = [(prompt, response)]

    return response


css = """
    .importantButton {
        background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
        border: none !important;
    }
    .importantButton:hover {
        background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
        border: none !important;
    }
    .disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;}
    .xsmall {font-size: x-small;}
"""

logger.info("start block")

with gr.Blocks(
    title=f"{Path(model_loc).name}",
    # theme=gr.themes.Soft(text_size="sm", spacing_size="sm"),
    theme=gr.themes.Glass(text_size="sm", spacing_size="sm"),
    css=css,
) as block:
    # buff_var = gr.State("")
    with gr.Accordion("🎈 Info", open=False):
        gr.Markdown(
            f"""<h5><center>{Path(model_loc).name}</center></h4>
            Most examples are meant for another model.
            You probably should try to test
            some related prompts.""",
            elem_classes="xsmall",
        )

    # chatbot = gr.Chatbot().style(height=700)  # 500
    chatbot = gr.Chatbot(height=500)

    # buff = gr.Textbox(show_label=False, visible=True)

    with gr.Row():
        with gr.Column(scale=5):
            msg = gr.Textbox(
                label="Chat Message Box",
                placeholder="Ask me anything (press Shift+Enter or click Submit to send)",
                show_label=False,
                # container=False,
                lines=6,
                max_lines=30,
                show_copy_button=True,
                # ).style(container=False)
            )
        with gr.Column(scale=1, min_width=50):
            with gr.Row():
                submit = gr.Button("Submit", elem_classes="xsmall")
                stop = gr.Button("Stop", visible=True)
                clear = gr.Button("Clear History", visible=True)
    with gr.Row(visible=False):
        with gr.Accordion("Advanced Options:", open=False):
            with gr.Row():
                with gr.Column(scale=2):
                    system = gr.Textbox(
                        label="System Prompt",
                        value=prompt_template,
                        show_label=False,
                        container=False,
                        # ).style(container=False)
                    )
                with gr.Column():
                    with gr.Row():
                        change = gr.Button("Change System Prompt")
                        reset = gr.Button("Reset System Prompt")

    with gr.Accordion("Example Inputs", open=True):
        examples = gr.Examples(
            examples=examples_list,
            inputs=[msg],
            examples_per_page=40,
        )

    # with gr.Row():
    with gr.Accordion("Disclaimer", open=False):
        _ = Path(model_loc).name
        gr.Markdown(
            f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
            "factually accurate information. {_} was trained on various public datasets; while great efforts "
            "have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
            "biased, or otherwise offensive outputs.",
            elem_classes=["disclaimer"],
        )

    msg_submit_event = msg.submit(
        # fn=conversation.user_turn,
        fn=user,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=True,
        show_progress="full",
        # api_name=None,
    ).then(bot, chatbot, chatbot, queue=True)
    submit_click_event = submit.click(
        # fn=lambda x, y: ("",) + user(x, y)[1:],  # clear msg
        fn=user1,  # clear msg
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=True,
        # queue=False,
        show_progress="full",
        # api_name=None,
    ).then(bot, chatbot, chatbot, queue=True)
    stop.click(
        fn=None,
        inputs=None,
        outputs=None,
        cancels=[msg_submit_event, submit_click_event],
        queue=False,
    )
    clear.click(lambda: None, None, chatbot, queue=False)

    with gr.Accordion("For Chat/Translation API", open=False, visible=False):
        input_text = gr.Text()
        api_btn = gr.Button("Go", variant="primary")
        out_text = gr.Text()

    api_btn.click(
        predict_api,
        input_text,
        out_text,
        api_name="api",
    )

    # block.load(update_buff, [], buff, every=1)
    # block.load(update_buff, [buff_var], [buff_var, buff], every=1)

# concurrency_count=5, max_size=20
# max_size=36, concurrency_count=14
# CPU cpu_count=2 16G, model 7G
# CPU UPGRADE cpu_count=8 32G, model 7G

# does not work
_ = """
# _ = int(psutil.virtual_memory().total / 10**9 // file_size - 1)
# concurrency_count = max(_, 1)
if psutil.cpu_count(logical=False) >= 8:
    # concurrency_count = max(int(32 / file_size) - 1, 1)
else:
    # concurrency_count = max(int(16 / file_size) - 1, 1)
# """

# default concurrency_count = 1
# block.queue(concurrency_count=concurrency_count, max_size=5).launch(debug=True)

server_port = 7860
if "forindo" in platform.node():
    server_port = 7861
block.queue(max_size=5).launch(debug=True, server_name="0.0.0.0", server_port=server_port)

# block.queue(max_size=5).launch(debug=True, server_name="0.0.0.0")