# GPT Chatbot # Create Conda virtual environment # conda create --name gpt_chatbot python=3.9.4 # conda activate gpt_chatbot # Installation # pip install streamlit pypdf2 langchain python-dotenv faiss-cpu openai huggingface_hub # pip install tiktoken # pip install InstructorEmbedding sentence_transformers # Could not import tiktoken python package. This is needed in order to for OpenAIEmbeddings. Please install it with `pip install tiktoken`. # run the app using the following command in anaconda VS Code terminal # streamlit run app.py import os import time from loguru import logger import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS # FAISS instead of PineCone from langchain.llms import OpenAI from langchain.llms import HuggingFaceHub from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template os.environ["TZ"] = "Asia/Shanghai" try: time.tzset() except Exception: ... # Windows logger.warning("Windows, cant set time.tzset()") def get_pdf_text(pdf_docs): text ="" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): # embeddings = OpenAIEmbeddings() model_name = "hkunlp/instructor-xl" model_name = "hkunlp/instructor-large" model_name = "hkunlp/instructor-base" logger.info(f"Loading {model_name}") embeddings = HuggingFaceInstructEmbeddings(model_name=model_name) logger.info(f"Done loading {model_name}") logger.info(f"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)") vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) logger.info(f"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)") return vectorstore def get_conversation_chain(vectorstore): llm = OpenAI() #llm = ChatOpenAI() #llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): # st.session_state.conversation contains all the configuration from our vectorstore and memory. response = st.session_state.conversation({'question': user_question}) # st.write(response) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="Chat with multiple law journal PDFs", page_icon=":books:") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple PDFs :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) #st.write(user_template.replace("{{MSG}}", "hello robot"), unsafe_allow_html=True) #st.write(bot_template.replace("{{MSG}}", "hello human"), unsafe_allow_html=True) # "https://i.ibb.co/rdZC7LZ/Photo-logo-1.png" # "https://huggingface.co/spaces/gli-mrunal/GPT_instruct_chatbot/blob/main/images/bot.jpg" # "https://huggingface.co/spaces/gli-mrunal/GPT_instruct_chatbot/blob/main/images/CSUN_Matadors_logo.svg.png" with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDfs here and click 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # --------------- get pdf text ------------------- raw_text = get_pdf_text(pdf_docs) #st.write(raw_text) # ---------- get the text chunks ------------------------- text_chunks = get_text_chunks(raw_text) #st.write(text_chunks) # -------------- create vector store------------------------ # https://openai.com/pricing --> Embedding Models # Chose to use the best embedding model - intructor_xl ranked higher than OpenAi's embeddings from huggingface leaderboard # https://huggingface.co/spaces/mteb/leaderboard logger.info("Start get_vectorstore") vectorstore = get_vectorstore(text_chunks) logger.info("Done get_vectorstore") logger.info("Start create conversation chain") # create conversation chain st.session_state.conversation = get_conversation_chain(vectorstore) #conversation = get_conversation_chain(vectorstore) logger.info("Done create conversation chain") #st.session_state.conversation if __name__ == '__main__': main()