File size: 6,020 Bytes
1d23de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4434285
 
 
1d23de4
 
 
 
 
 
 
 
 
 
 
 
 
 
4434285
 
 
 
 
 
 
 
1d23de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb5a787
1251e7a
 
eb5a787
 
 
 
 
1d23de4
eb5a787
 
1d23de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332221c
1d23de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4434285
1d23de4
4434285
1d23de4
4434285
1d23de4
 
 
4434285
 
1d23de4
4434285
1d23de4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# GPT Chatbot 

# Create Conda virtual environment
# conda create --name gpt_chatbot  python=3.9.4
# conda activate gpt_chatbot

# Installation
# pip install streamlit pypdf2 langchain python-dotenv faiss-cpu openai huggingface_hub
# pip install tiktoken 

# pip install InstructorEmbedding sentence_transformers

# Could not import tiktoken python package. This is needed in order to for OpenAIEmbeddings. Please install it with `pip install tiktoken`.
# run the app using the following command in anaconda VS Code terminal
# streamlit run app.py
import os
import time
from loguru import logger

import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS # FAISS instead of PineCone
from langchain.llms import OpenAI
from langchain.llms import HuggingFaceHub
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template 

os.environ["TZ"] = "Asia/Shanghai"
try:
    time.tzset()
except Exception:
    ...  # Windows
    logger.warning("Windows, cant set time.tzset()")


def get_pdf_text(pdf_docs):
    text =""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return  chunks

def get_vectorstore(text_chunks):
    # embeddings = OpenAIEmbeddings()
    model_name = "hkunlp/instructor-xl"
    model_name = "hkunlp/instructor-large"
    model_name = "hkunlp/instructor-base"
    logger.info(f"Loading {model_name}")
    embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
    logger.info(f"Done loading {model_name}")

    logger.info(f"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    logger.info(f"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)")

    return vectorstore


def get_conversation_chain(vectorstore):
    llm = OpenAI()
    #llm = ChatOpenAI()
    #llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
    memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    # st.session_state.conversation contains all the configuration from our vectorstore and memory.
    response = st.session_state.conversation({'question': user_question})
    # st.write(response)
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple law journal PDFs",
                        page_icon=":books:")
    
    st.write(css, unsafe_allow_html=True)
    
    if "conversation" not in st.session_state:
        st.session_state.conversation = None

    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None
    
    st.header("Chat with multiple PDFs :books:")

    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    #st.write(user_template.replace("{{MSG}}", "hello robot"), unsafe_allow_html=True)
    #st.write(bot_template.replace("{{MSG}}", "hello human"), unsafe_allow_html=True)

    # "https://i.ibb.co/rdZC7LZ/Photo-logo-1.png"
    # "https://huggingface.co/spaces/gli-mrunal/GPT_instruct_chatbot/blob/main/images/bot.jpg" 
    # "https://huggingface.co/spaces/gli-mrunal/GPT_instruct_chatbot/blob/main/images/CSUN_Matadors_logo.svg.png"

    with st.sidebar:
        st.subheader("Your documents")

        pdf_docs = st.file_uploader(
            "Upload your PDfs here and click 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # ---------------   get pdf text  -------------------

                raw_text = get_pdf_text(pdf_docs)
                #st.write(raw_text)

                # ----------   get the text chunks  -------------------------

                text_chunks = get_text_chunks(raw_text)
                #st.write(text_chunks)


                # --------------   create vector store------------------------
                # https://openai.com/pricing  --> Embedding Models
                # Chose to use the best embedding model - intructor_xl ranked higher than OpenAi's embeddings from huggingface leaderboard
                # https://huggingface.co/spaces/mteb/leaderboard

                logger.info("Start get_vectorstore")
                vectorstore = get_vectorstore(text_chunks)
                logger.info("Done get_vectorstore")

                logger.info("Start create conversation chain")
                # create conversation chain
                st.session_state.conversation = get_conversation_chain(vectorstore)
                #conversation = get_conversation_chain(vectorstore)
                logger.info("Done create conversation chain")
                
    #st.session_state.conversation
         

if __name__ == '__main__':
    main()