Spaces:
Sleeping
Sleeping
File size: 6,020 Bytes
1d23de4 4434285 1d23de4 4434285 1d23de4 eb5a787 1251e7a eb5a787 1d23de4 eb5a787 1d23de4 332221c 1d23de4 4434285 1d23de4 4434285 1d23de4 4434285 1d23de4 4434285 1d23de4 4434285 1d23de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# GPT Chatbot
# Create Conda virtual environment
# conda create --name gpt_chatbot python=3.9.4
# conda activate gpt_chatbot
# Installation
# pip install streamlit pypdf2 langchain python-dotenv faiss-cpu openai huggingface_hub
# pip install tiktoken
# pip install InstructorEmbedding sentence_transformers
# Could not import tiktoken python package. This is needed in order to for OpenAIEmbeddings. Please install it with `pip install tiktoken`.
# run the app using the following command in anaconda VS Code terminal
# streamlit run app.py
import os
import time
from loguru import logger
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS # FAISS instead of PineCone
from langchain.llms import OpenAI
from langchain.llms import HuggingFaceHub
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset()
except Exception:
... # Windows
logger.warning("Windows, cant set time.tzset()")
def get_pdf_text(pdf_docs):
text =""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
# embeddings = OpenAIEmbeddings()
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
logger.info(f"Loading {model_name}")
embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
logger.info(f"Done loading {model_name}")
logger.info(f"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
logger.info(f"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)")
return vectorstore
def get_conversation_chain(vectorstore):
llm = OpenAI()
#llm = ChatOpenAI()
#llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
# st.session_state.conversation contains all the configuration from our vectorstore and memory.
response = st.session_state.conversation({'question': user_question})
# st.write(response)
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple law journal PDFs",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
#st.write(user_template.replace("{{MSG}}", "hello robot"), unsafe_allow_html=True)
#st.write(bot_template.replace("{{MSG}}", "hello human"), unsafe_allow_html=True)
# "https://i.ibb.co/rdZC7LZ/Photo-logo-1.png"
# "https://huggingface.co/spaces/gli-mrunal/GPT_instruct_chatbot/blob/main/images/bot.jpg"
# "https://huggingface.co/spaces/gli-mrunal/GPT_instruct_chatbot/blob/main/images/CSUN_Matadors_logo.svg.png"
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDfs here and click 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# --------------- get pdf text -------------------
raw_text = get_pdf_text(pdf_docs)
#st.write(raw_text)
# ---------- get the text chunks -------------------------
text_chunks = get_text_chunks(raw_text)
#st.write(text_chunks)
# -------------- create vector store------------------------
# https://openai.com/pricing --> Embedding Models
# Chose to use the best embedding model - intructor_xl ranked higher than OpenAi's embeddings from huggingface leaderboard
# https://huggingface.co/spaces/mteb/leaderboard
logger.info("Start get_vectorstore")
vectorstore = get_vectorstore(text_chunks)
logger.info("Done get_vectorstore")
logger.info("Start create conversation chain")
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
#conversation = get_conversation_chain(vectorstore)
logger.info("Done create conversation chain")
#st.session_state.conversation
if __name__ == '__main__':
main() |