from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers_interpret import SequenceClassificationExplainer import torch import pandas as pd class SentimentAnalysis: """ This class is an example Attributes: class_attribute (str): (class attribute) The class attribute instance_attribute (str): The instance attribute """ def __init__(self): # Load Tokenizer & Model hub_location = 'cardiffnlp/twitter-roberta-base-sentiment' self.tokenizer = AutoTokenizer.from_pretrained(hub_location) self.model = AutoModelForSequenceClassification.from_pretrained(hub_location) # Change model labels in config self.model.config.id2label[0] = "Negative" self.model.config.id2label[1] = "Neutral" self.model.config.id2label[2] = "Positive" self.model.config.label2id["Negative"] = self.model.config.label2id.pop("LABEL_0") self.model.config.label2id["Neutral"] = self.model.config.label2id.pop("LABEL_1") self.model.config.label2id["Positive"] = self.model.config.label2id.pop("LABEL_2") # Instantiate explainer self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer) def justify(self, text): """ The function to add two Complex Numbers. Parameters: num (ComplexNumber): The complex number to be added. Returns: ComplexNumber: A complex number which contains the sum. """ word_attributions = self.explainer(text) html = self.explainer.visualize("example.html") return html def classify(self, text): """ The function to add two Complex Numbers. Parameters: num (ComplexNumber): The complex number to be added. Returns: ComplexNumber: A complex number which contains the sum. """ tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt') outputs = self.model(**tokens) probs = torch.nn.functional.softmax(outputs[0], dim=-1) probs = probs.mean(dim=0).detach().numpy() preds = pd.Series(probs, index=["Negative", "Neutral", "Positive"], name='Predicted Probability') return preds def run(self, text): """ The function to add two Complex Numbers. Parameters: num (ComplexNumber): The complex number to be added. Returns: ComplexNumber: A complex number which contains the sum. """ preds = self.classify(text) html = self.justify(text) return preds, html