File size: 8,940 Bytes
4b75840
 
2644c54
4b75840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620af8b
 
4b75840
 
 
 
 
 
 
 
 
 
 
9f8acd9
 
4b75840
 
 
 
 
 
 
 
 
4cb6bc6
 
4b75840
 
4cb6bc6
 
4b75840
 
 
4cb6bc6
4b75840
 
4cb6bc6
 
4b75840
 
4cb6bc6
 
 
4b75840
 
4cb6bc6
4b75840
 
 
 
 
 
 
 
 
 
 
 
 
7b8b2a7
 
 
4b75840
 
 
 
 
 
 
fbaddca
4b75840
 
 
 
 
 
 
 
 
9a06d85
4b75840
 
 
 
 
 
 
 
 
 
 
 
 
620af8b
4b75840
2644c54
4b75840
 
 
 
 
 
 
 
 
d30b3cd
4b75840
 
 
 
 
 
 
 
 
 
 
620af8b
4b75840
 
 
2644c54
4b75840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620af8b
4b75840
2644c54
4b75840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620af8b
4b75840
2644c54
4b75840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620af8b
4b75840
2644c54
4b75840
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import pandas as pd
import streamlit as st
from annotated_text import annotated_text
from streamlit_option_menu import option_menu
from sentiment_analysis import SentimentAnalysis
from keyword_extraction import KeywordExtractor
from part_of_speech_tagging import POSTagging
from emotion_detection import EmotionDetection
from named_entity_recognition import NamedEntityRecognition

hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)


@st.cache(allow_output_mutation=True)
def load_sentiment_model():
    return SentimentAnalysis()

@st.cache(allow_output_mutation=True)
def load_keyword_model():
    return KeywordExtractor()

@st.cache(allow_output_mutation=True)
def load_pos_model():
    return POSTagging()

@st.cache(allow_output_mutation=True)
def load_emotion_model():
    return EmotionDetection()

@st.cache(allow_output_mutation=True)
def load_ner_model():
    return NamedEntityRecognition()


sentiment_analyzer = load_sentiment_model()
keyword_extractor = load_keyword_model()
pos_tagger = load_pos_model()
emotion_detector = load_emotion_model()
ner = load_ner_model()

example_text = "This is example text that contains both names of organizations like Hugging Face and cities like New York, all while portraying an upbeat attitude."

with st.sidebar:
    page = option_menu(menu_title='Menu',
                       menu_icon="robot",
                       options=["Welcome!",
                                "Sentiment Analysis",
                                "Keyword Extraction",
                                "Part of Speech Tagging",
                                "Emotion Detection",
                                "Named Entity Recognition"],
                       icons=["house-door",
                              "chat-dots",
                              "key",
                              "tag",
                              "emoji-heart-eyes",
                              "building"],
                       default_index=0
                       )

st.title('Open-source NLP')

if page == "Welcome!":
    st.header('Welcome!')

    st.markdown("![Alt Text](https://media.giphy.com/media/2fEvoZ9tajMxq/giphy.gif)")
    st.write(
        """
     
     
        """
    )

    st.subheader("Quickstart")
    st.write(
        """
        Replace the example text below and flip through the pages in the menu to perform NLP tasks on-demand!
        Feel free to use the example text for a test run. 
        """
    )

    text = st.text_area("Paste text here", value=example_text)

    st.subheader("Introduction")
    st.write("""
        Hello! This application is a celebration of open-source and the power that programmers have been granted today
        by those who give back to the community. This tool was constructed using Streamlit, Huggingface Transformers, 
        Transformers-Interpret, NLTK, Spacy, amongst other open-source Python libraries and models. 
        
        Utilizing this tool you will be able to perform a multitude of Natural Language Processing Tasks on a range of
        different tasks. All you need to do is paste your input, select your task, and hit the start button! 
        
        * This application currently supports:
            * Sentiment Analysis
            * Keyword Extraction
            * Part of Speech Tagging
            * Emotion Detection
            * Named Entity Recognition
            
        More features may be added in the future including article/tweet/youtube input and model quality improvements, 
        depending on community feedback. Please reach out to me at [email protected] or at my Linkedin page listed 
        below if you have ideas or suggestions for improvement.
        
        If you would like to contribute yourself, feel free to fork the Github repository listed below and submit a merge request.
        """
    )
    st.subheader("Notes")
    st.write(
        """
        * This dashboard was constructed by myself, but every resource used is open-source! If you are interested in my other works you can view them here:
        
           [Project Github](https://github.com/MiesnerJacob/nlp-dashboard)
           
           [Jacob Miesner's Github](https://github.com/MiesnerJacob)
           
           [Jacob Miesner's Linkedin](https://www.linkedin.com/in/jacob-miesner-885050125/)
           
           [Jacob Miesner's Website](https://www.jacobmiesner.com)
              
        * The prediction justification for some of the tasks are printed as the model views them. For this reason the text may contain special tokens like [CLS] or [SEP] or even hashtags splitting words. If you are knowledgeable about language models and how they work these will be familiar, if you do not have prior experience with language models you can ignore these characters.  
        """
    )

elif page == "Sentiment Analysis":
    st.header('Sentiment Analysis')
    st.markdown("![Alt Text](https://media.giphy.com/media/XIqCQx02E1U9W/giphy.gif)")
    st.write(
        """


        """
    )

    text = st.text_area("Paste text here", value=example_text)

    if st.button('πŸ”₯ Run!'):
        with st.spinner("Loading..."):
            preds, html = sentiment_analyzer.run(text)
            st.success('All done!')
            st.write("")
            st.subheader("Sentiment Predictions")
            st.bar_chart(data=preds, width=0, height=0, use_container_width=True)
            st.write("")
            st.subheader("Sentiment Justification")
            raw_html = html._repr_html_()
            st.components.v1.html(raw_html, height=500)

elif page == "Keyword Extraction":
    st.header('Keyword Extraction')
    st.markdown("![Alt Text](https://media.giphy.com/media/xT9C25UNTwfZuk85WP/giphy-downsized-large.gif)")
    st.write(
        """


        """
    )

    text = st.text_area("Paste text here", value=example_text)

    max_keywords = st.slider('# of Keywords Max Limit', min_value=1, max_value=10, value=5, step=1)

    if st.button('πŸ”₯ Run!'):
        with st.spinner("Loading..."):
            annotation, keywords = keyword_extractor.generate(text, max_keywords)
            st.success('All done!')

        if annotation:
            st.subheader("Keyword Annotation")
            st.write("")
            annotated_text(*annotation)
            st.text("")

        st.subheader("Extracted Keywords")
        st.write("")
        df = pd.DataFrame(keywords, columns=['Extracted Keywords'])
        csv = df.to_csv(index=False).encode('utf-8')
        st.download_button('Download Keywords to CSV', csv, file_name='news_intelligence_keywords.csv')

        data_table = st.table(df)

elif page == "Part of Speech Tagging":
    st.header('Part of Speech Tagging')
    st.markdown("![Alt Text](https://media.giphy.com/media/WoWm8YzFQJg5i/giphy.gif)")
    st.write(
        """


        """
    )

    text = st.text_area("Paste text here", value=example_text)

    if st.button('πŸ”₯ Run!'):
        with st.spinner("Loading..."):
            preds = pos_tagger.classify(text)
            st.success('All done!')
            st.write("")
            st.subheader("Part of Speech tags")
            annotated_text(*preds)
            st.write("")
            st.components.v1.iframe('https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html', height=1000)

elif page == "Emotion Detection":
    st.header('Emotion Detection')
    st.markdown("![Alt Text](https://media.giphy.com/media/fU8X6ozSszyEw/giphy.gif)")
    st.write(
        """


        """
    )

    text = st.text_area("Paste text here", value=example_text)

    if st.button('πŸ”₯ Run!'):
        with st.spinner("Loading..."):
            preds, html = emotion_detector.run(text)
            st.success('All done!')
            st.write("")
            st.subheader("Emotion Predictions")
            st.bar_chart(data=preds, width=0, height=0, use_container_width=True)
            raw_html = html._repr_html_()
            st.write("")
            st.subheader("Emotion Justification")
            st.components.v1.html(raw_html, height=500)

elif page == "Named Entity Recognition":
    st.header('Named Entity Recognition')
    st.markdown("![Alt Text](https://media.giphy.com/media/lxO8wdWdu4tig/giphy.gif)")
    st.write(
        """


        """
    )

    text = st.text_area("Paste text here", value=example_text)

    if st.button('πŸ”₯ Run!'):
        with st.spinner("Loading..."):
            preds, ner_annotation = ner.classify(text)
            st.success('All done!')
            st.write("")
            st.subheader("NER Predictions")
            annotated_text(*ner_annotation)
            st.write("")
            st.subheader("NER Prediction Metadata")
            st.write(preds)