Spaces:
Sleeping
Sleeping
File size: 2,172 Bytes
4b75840 e99a699 620af8b 7b8b2a7 4b75840 620af8b 4b75840 620af8b 4b75840 620af8b 4b75840 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers_interpret import SequenceClassificationExplainer
import torch
import pandas as pd
class EmotionDetection:
""" This class is an example
Attributes:
class_attribute (str): (class attribute) The class attribute
instance_attribute (str): The instance attribute
"""
def __init__(self):
hub_location = 'cardiffnlp/twitter-roberta-base-emotion'
self.tokenizer = AutoTokenizer.from_pretrained(hub_location)
self.model = AutoModelForSequenceClassification.from_pretrained(hub_location)
self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer)
def justify(self, text):
"""
The function to add two Complex Numbers.
Parameters:
num (ComplexNumber): The complex number to be added.
Returns:
ComplexNumber: A complex number which contains the sum.
"""
word_attributions = self.explainer(text)
html = self.explainer.visualize("example.html")
return html
def classify(self, text):
"""
The function to add two Complex Numbers.
Parameters:
num (ComplexNumber): The complex number to be added.
Returns:
ComplexNumber: A complex number which contains the sum.
"""
tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt')
outputs = self.model(**tokens)
probs = torch.nn.functional.softmax(outputs[0], dim=-1)
probs = probs.mean(dim=0).detach().numpy()
labels = list(self.model.config.id2label.values())
preds = pd.Series(probs, index=labels, name='Predicted Probability')
return preds
def run(self, text):
"""
The function to add two Complex Numbers.
Parameters:
num (ComplexNumber): The complex number to be added.
Returns:
ComplexNumber: A complex number which contains the sum.
"""
preds = self.classify(text)
html = self.justify(text)
return preds, html |