import subprocess import os import torch import gradio as gr import os import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread from transformers.utils.import_utils import _is_package_available # Set an environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) DESCRIPTION = """ # MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention (Under Review) [[paper](https://arxiv.org/abs/2406.05736)] _Huiqiang Jiang†, Yucheng Li†, Chengruidong Zhang†, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_

[Code] [Project Page] [Paper]

This is only a deployment demo. Due to limited GPU resources, we do not provide an online demo. You will need to follow the code below to try MInference locally. ```bash git clone https://huggingface.co/spaces/microsoft/MInference cd MInference pip install -r requirments.txt pip install flash_attn pycuda==2023.1 python app.py ```
""" LICENSE = """

© 2024 Microsoft

""" PLACEHOLDER = """

LLaMA-3-8B-Gradient-1M w/ MInference

Ask me anything...

""" css = """ h1 { text-align: center; display: block; } """ # Load the tokenizer and model model_name = "gradientai/Llama-3-8B-Instruct-Gradient-1048k" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # to("cuda:0") if torch.cuda.is_available() and _is_package_available("pycuda"): from minference import MInference minference_patch = MInference("minference", model_name) model = minference_patch(model) terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")] @spaces.GPU(duration=120) def chat_llama3_8b( message: str, history: list, temperature: float, max_new_tokens: int ) -> str: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ # global model conversation = [] for user, assistant in history: conversation.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to( model.device ) streamer = TextIteratorStreamer( tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. if temperature == 0: generate_kwargs["do_sample"] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) # print(outputs) yield "".join(outputs) # Gradio block chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface") with gr.Blocks(fill_height=True, css=css) as demo: gr.Markdown(DESCRIPTION) gr.ChatInterface( fn=chat_llama3_8b, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion( label="⚙️ Parameters", open=False, render=False ), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False, ), gr.Slider( minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False, ), ], examples=[ ["How to setup a human base on Mars? Give short answer."], ["Explain theory of relativity to me like I’m 8 years old."], ["What is 9,000 * 9,000?"], ["Write a pun-filled happy birthday message to my friend Alex."], ["Justify why a penguin might make a good king of the jungle."], ], cache_examples=False, ) gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch(share=False)