import subprocess
import os
import torch
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from transformers.utils.import_utils import _is_package_available
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = """
# MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention (Under Review) [[paper](https://arxiv.org/abs/2406.05736)]
_Huiqiang Jiang†, Yucheng Li†, Chengruidong Zhang†, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
This is only a deployment demo. Due to limited GPU resources, we do not provide an online demo. You will need to follow the code below to try MInference locally.
```bash
git clone https://huggingface.co/spaces/microsoft/MInference
cd MInference
pip install -r requirments.txt
pip install flash_attn pycuda==2023.1
python app.py
```
"""
LICENSE = """
"""
PLACEHOLDER = """
LLaMA-3-8B-Gradient-1M w/ MInference
Ask me anything...
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
# Load the tokenizer and model
model_name = "gradientai/Llama-3-8B-Instruct-Gradient-1048k"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
) # to("cuda:0")
if torch.cuda.is_available() and _is_package_available("pycuda"):
from minference import MInference
minference_patch = MInference("minference", model_name)
model = minference_patch(model)
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
@spaces.GPU(duration=120)
def chat_llama3_8b(
message: str, history: list, temperature: float, max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
# global model
conversation = []
for user, assistant in history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(
model.device
)
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs["do_sample"] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
# print(outputs)
yield "".join(outputs)
# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface")
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False,
),
],
examples=[
["How to setup a human base on Mars? Give short answer."],
["Explain theory of relativity to me like I’m 8 years old."],
["What is 9,000 * 9,000?"],
["Write a pun-filled happy birthday message to my friend Alex."],
["Justify why a penguin might make a good king of the jungle."],
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch(share=False)