Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
import os | |
import torch | |
import gradio as gr | |
import os | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
from transformers.utils.import_utils import _is_package_available | |
# Set an environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
DESCRIPTION = """ | |
# MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention (Under Review) [[paper](https://arxiv.org/abs/2406.05736)] | |
_Huiqiang Jiang†, Yucheng Li†, Chengruidong Zhang†, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_ | |
<h2 style="text-align: center;"><a href="https://github.com/microsoft/MInference" target="blank"> [Code]</a> | |
<a href="https://hqjiang.com/minference.html" target="blank"> [Project Page]</a> | |
<a href="https://arxiv.org/abs/2406.05736" target="blank"> [Paper]</a></h2> | |
<font color="brown"><b>This is only a deployment demo. Due to limited GPU resources, we do not provide an online demo. You will need to follow the code below to try MInference locally.</b></font> | |
```bash | |
git clone https://huggingface.co/spaces/microsoft/MInference | |
cd MInference | |
pip install -r requirments.txt | |
pip install flash_attn pycuda==2023.1 | |
python app.py | |
``` | |
<br/> | |
""" | |
LICENSE = """ | |
<div style="text-align: center;"> | |
<p>© 2024 Microsoft</p> | |
</div> | |
""" | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaMA-3-8B-Gradient-1M w/ MInference</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
# Load the tokenizer and model | |
model_name = "gradientai/Llama-3-8B-Instruct-Gradient-1048k" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype="auto", device_map="auto" | |
) # to("cuda:0") | |
if torch.cuda.is_available() and _is_package_available("pycuda"): | |
from minference import MInference | |
minference_patch = MInference("minference", model_name) | |
model = minference_patch(model) | |
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")] | |
def chat_llama3_8b( | |
message: str, history: list, temperature: float, max_new_tokens: int | |
) -> str: | |
""" | |
Generate a streaming response using the llama3-8b model. | |
Args: | |
message (str): The input message. | |
history (list): The conversation history used by ChatInterface. | |
temperature (float): The temperature for generating the response. | |
max_new_tokens (int): The maximum number of new tokens to generate. | |
Returns: | |
str: The generated response. | |
""" | |
# global model | |
conversation = [] | |
for user, assistant in history: | |
conversation.extend( | |
[ | |
{"role": "user", "content": user}, | |
{"role": "assistant", "content": assistant}, | |
] | |
) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to( | |
model.device | |
) | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=terminators, | |
) | |
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. | |
if temperature == 0: | |
generate_kwargs["do_sample"] = False | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
# print(outputs) | |
yield "".join(outputs) | |
# Gradio block | |
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface") | |
with gr.Blocks(fill_height=True, css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.ChatInterface( | |
fn=chat_llama3_8b, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion( | |
label="⚙️ Parameters", open=False, render=False | |
), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.95, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=512, | |
label="Max new tokens", | |
render=False, | |
), | |
], | |
examples=[ | |
["How to setup a human base on Mars? Give short answer."], | |
["Explain theory of relativity to me like I’m 8 years old."], | |
["What is 9,000 * 9,000?"], | |
["Write a pun-filled happy birthday message to my friend Alex."], | |
["Justify why a penguin might make a good king of the jungle."], | |
], | |
cache_examples=False, | |
) | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.launch(share=False) | |