Spaces:
Running
on
Zero
Running
on
Zero
File size: 45,414 Bytes
43a7079 24083d5 43a7079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 |
import json
import torch
import transformers
from transformers.cache_utils import *
from transformers.models.llama.modeling_llama import *
from .modules.inf_llm import InfLLMGenerator, inf_llm_forward
from .modules.minference_forward import (
gather_last_q_vertical_slash_topk_v4,
gather_last_q_vertical_slash_topk_vllm,
init_minference_parameters,
minference_forward,
minference_kv_cache_cpu_forward,
minference_vllm_forward,
minference_with_snapkv_forward,
search_pattern,
sum_all_diagonal_matrix,
)
from .ops.streaming_kernel import stream_llm_forward
class RotaryEmbeddingESM(torch.nn.Module):
"""
Rotary position embeddings based on those in
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
matrices which depend on their relative positions.
"""
def __init__(
self,
dim: int,
base: Union[int, float] = 10000,
distance_scale: Union[int, float] = 1,
):
super().__init__()
self.base = base
self.distance_scale = distance_scale
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (
base ** (torch.arange(0, dim, 2, device="cuda", dtype=torch.float32) / dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self._seq_len_cached = -1
self._cos_cached = None
self._sin_cached = None
def rotate_half(self, x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(self, x, length, right, cos, sin):
dtype = x.dtype
if cos.dim() == 2:
cos = cos[right - length : right, :]
sin = sin[right - length : right, :]
elif cos.dim() == 3:
cos = cos[:, right - length : right, :]
sin = sin[:, right - length : right, :]
elif cos.dim() == 4:
cos = cos[:, :, right - length : right, :]
sin = sin[:, :, right - length : right, :]
return ((x.float() * cos) + (self.rotate_half(x).float() * sin)).to(dtype)
def _update_cos_sin_tables(self, x, seq_dim):
seq_len = x.size(seq_dim)
if seq_len > self._seq_len_cached:
self._seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t * self.distance_scale, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
if x.dim() == 2:
self._cos_cached = emb.cos()
self._sin_cached = emb.sin()
elif x.dim() == 3:
self._cos_cached = emb.cos()[None, :, :]
self._sin_cached = emb.sin()[None, :, :]
elif x.dim() == 4:
self._cos_cached = emb.cos()[None, None, :, :]
self._sin_cached = emb.sin()[None, None, :, :]
return self._cos_cached, self._sin_cached
def _update_cos_sin_tables_len(self, seq_len, device, dim=None):
if seq_len > self._seq_len_cached:
if dim is None:
assert self._cos_cached is not None
dim = self._cos_cached.dim()
self._seq_len_cached = seq_len
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
freqs = torch.outer(t * self.distance_scale, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
if dim == 2:
self._cos_cached = emb.cos()
self._sin_cached = emb.sin()
elif dim == 3:
self._cos_cached = emb.cos()[None, :, :]
self._sin_cached = emb.sin()[None, :, :]
elif dim == 4:
self._cos_cached = emb.cos()[None, None, :, :]
self._sin_cached = emb.sin()[None, None, :, :]
return self._cos_cached, self._sin_cached
def apply_rotary_pos_emb_one_angle(self, x: torch.Tensor, index):
dtype = x.dtype
cos, sin = self._update_cos_sin_tables_len(index, x.device)
if cos.dim() == 2:
cos = cos[index - 1 : index, :]
sin = sin[index - 1 : index, :]
elif cos.dim() == 3:
cos = cos[:, index - 1 : index, :]
sin = sin[:, index - 1 : index, :]
elif cos.dim() == 4:
cos = cos[:, :, index - 1 : index, :]
sin = sin[:, :, index - 1 : index, :]
return ((x.float() * cos) + (self.rotate_half(x).float() * sin)).to(dtype)
def forward(
self, q: torch.Tensor, k: torch.Tensor, seq_dim=-2
) -> Tuple[torch.Tensor, torch.Tensor]:
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
k, seq_dim=seq_dim
)
return (
self.apply_rotary_pos_emb(
q, q.size(seq_dim), k.size(seq_dim), self._cos_cached, self._sin_cached
),
self.apply_rotary_pos_emb(
k, k.size(seq_dim), k.size(seq_dim), self._cos_cached, self._sin_cached
),
)
ATTN_FORWRAD = {
"streaming": stream_llm_forward,
"minference": minference_forward,
"inf_llm": inf_llm_forward,
}
def huggingface_forward(forward):
def hf_forward(
self,
hidden_states: torch.Tensor,
attention_mask=None,
position_ids=None,
past_key_value=None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
):
assert not output_attentions
ret = forward(
self,
hidden_states,
hidden_states,
position_ids,
use_cache,
past_key_value,
self.q_proj,
self.k_proj,
self.v_proj,
self.o_proj,
self.head_dim,
self.num_heads,
self.num_key_value_heads,
)
if use_cache:
o, pkv = ret
else:
o = ret
pkv = None
return o, None, pkv
return hf_forward
def hf_437_prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, transformers.cache_utils.Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
**kwargs,
):
# With static cache, the `past_key_values` is None
# TODO joao: standardize interface for the different Cache classes and remove of this if
has_static_cache = False
if past_key_values is None:
past_key_values = getattr(
getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None
)
has_static_cache = past_key_values is not None
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, transformers.cache_utils.Cache):
past_length = (
cache_position[0]
if cache_position is not None
else past_key_values.get_seq_length()
)
max_cache_length = (
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
if past_key_values.get_max_length() is not None
else None
)
cache_length = (
past_length
if max_cache_length is None
else torch.min(max_cache_length, past_length)
)
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
else:
# cache_length = past_length = past_key_values[0][0].shape[2]
cache_length = past_length = cache_position[0]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {"input_ids": input_ids.contiguous()}
input_length = (
position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
)
if cache_position is None:
cache_position = torch.arange(
past_length, past_length + input_length, device=input_ids.device
)
else:
cache_position = cache_position[-input_length:]
if has_static_cache:
past_key_values = None
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
def prepare_inputs_for_generation_snapkv(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if past_key_values is None: # [SnapKV]
for layer in self.model.layers:
layer.self_attn.kv_seq_len = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
# cache_length = past_length = past_key_values[0][0].shape[2]
# max_cache_length = None
cache_length = past_length = self.model.layers[0].self_attn.kv_seq_len
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
def _prepare_decoder_attention_mask_inference(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# [bsz, seq_len]
if past_key_values_length > 0 and attention_mask is not None:
attention_mask = torch.cat(
(
torch.full(
(input_shape[0], past_key_values_length),
True,
dtype=attention_mask.dtype,
device=attention_mask.device,
),
attention_mask,
),
dim=-1,
)
if attention_mask is not None and torch.all(attention_mask):
return None # This uses the faster call when training with full samples
return attention_mask
def forward_llama_decoder_layer(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states.clone()
batch, seq_len, embed_dim = hidden_states.shape
for start_idx in range(0, seq_len, 32000):
end_idx = min(seq_len, start_idx + 32000)
hidden_states[:, start_idx:end_idx, :] = self.input_layernorm(
hidden_states[:, start_idx:end_idx, :]
)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
padding_mask=padding_mask,
)
hidden_states = residual + hidden_states
# Fully Connected
for start_idx in range(0, seq_len, 32000):
end_idx = min(seq_len, start_idx + 32000)
part_hidden_states = hidden_states[:, start_idx:end_idx, :].clone()
part_hidden_states = self.post_attention_layernorm(part_hidden_states)
part_hidden_states = self.mlp(part_hidden_states)
hidden_states[:, start_idx:end_idx, :] += part_hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
def forward_llama_model(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
seq_length_with_past = seq_length
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
padding_mask = None
else:
if 0 in attention_mask:
padding_mask = attention_mask
else:
padding_mask = None
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
batch, seq_len, embed_dim = hidden_states.shape
for start_idx in range(0, seq_len, 32000):
end_idx = min(seq_len, start_idx + 32000)
hidden_states[:, start_idx:end_idx, :] = self.norm(
hidden_states[:, start_idx:end_idx, :]
)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache()
if use_legacy_cache
else next_decoder_cache
)
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def forward_llama_for_causal_lm(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
# assert labels is not None
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
torch.cuda.empty_cache()
hidden_states = outputs[0]
if labels is not None:
loss_fct = CrossEntropyLoss(reduction="sum")
valid_seq_len = input_ids.shape[-1] - 1
valid_seq_len_slide_win = torch.sum(labels[:, 1:] >= 0).item()
# print("valid_seq_len_slide_win", valid_seq_len)
loss = 0.0
for start_idx in range(0, valid_seq_len, 32000):
end_idx = min(start_idx + 32000, valid_seq_len)
shift_logits = self.lm_head(
hidden_states[..., start_idx:end_idx, :]
).float()
shift_labels = labels[..., start_idx + 1 : end_idx + 1].contiguous()
# Flatten the tokens
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss += loss_fct(shift_logits, shift_labels)
loss /= valid_seq_len_slide_win
logits = None
else:
if self.config.to_dict().get("is_ppl", False):
logits = self.lm_head(hidden_states)
else:
logits = self.lm_head(hidden_states[:, -1:]).float()
loss = None
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
)
def minference_patch(model, config):
from transformers import LlamaForCausalLM
if config.kv_cache_cpu:
return minference_patch_kv_cache_cpu(model)
if config.use_snapkv:
return minference_patch_with_snapkv(model)
Attention = model.model.layers[0].self_attn.__class__
Model = model.model.__class__
DecoderLayer = model.model.layers[0].__class__
forward = minference_forward()
def update_module(m):
if isinstance(m, Attention):
m.init_minference_parameters = init_minference_parameters.__get__(
m, Attention
)
m.gather_last_q_vertical_slash_topk_v4 = (
gather_last_q_vertical_slash_topk_v4.__get__(m, Attention)
)
m.forward = forward.__get__(m, Attention)
if isinstance(m, DecoderLayer):
m.forward = forward_llama_decoder_layer.__get__(m, DecoderLayer)
model.apply(update_module)
model.prepare_inputs_for_generation = hf_437_prepare_inputs_for_generation.__get__(
model, model.__class__
)
model.model._use_sdpa = False
model.model._prepare_decoder_attention_mask = (
_prepare_decoder_attention_mask_inference.__get__(
model.model, model.model.__class__
)
)
model.model.forward = forward_llama_model.__get__(
model.model, model.model.__class__
)
model.forward = forward_llama_for_causal_lm.__get__(model, model.__class__)
model.has_patch = True
print("Patched model for minference..")
return model
def minference_patch_kv_cache_cpu(model):
from transformers import LlamaForCausalLM
transformers.cache_utils.DynamicCache.update = cpu_cache_update
transformers.cache_utils.DynamicCache.get = cpu_cache_get
Attention = model.model.layers[0].self_attn.__class__
Model = model.model.__class__
DecoderLayer = model.model.layers[0].__class__
forward = minference_kv_cache_cpu_forward()
def update_module(m):
if isinstance(m, Attention):
m.init_minference_parameters = init_minference_parameters.__get__(
m, Attention
)
m.gather_last_q_vertical_slash_topk_v4 = (
gather_last_q_vertical_slash_topk_v4.__get__(m, Attention)
)
m.forward = forward.__get__(m, Attention)
if isinstance(m, DecoderLayer):
m.forward = forward_llama_decoder_layer.__get__(m, DecoderLayer)
model.apply(update_module)
model.prepare_inputs_for_generation = hf_437_prepare_inputs_for_generation.__get__(
model, model.__class__
)
model.model._use_sdpa = False
model.model._prepare_decoder_attention_mask = (
_prepare_decoder_attention_mask_inference.__get__(
model.model, model.model.__class__
)
)
model.model.forward = forward_llama_model.__get__(
model.model, model.model.__class__
)
model.forward = forward_llama_for_causal_lm.__get__(model, model.__class__)
print("Patched model for MInference load KV Cache to CPU.")
return model
def minference_patch_with_snapkv(model):
from transformers import LlamaForCausalLM
Attention = model.model.layers[0].self_attn.__class__
Model = model.model.__class__
DecoderLayer = model.model.layers[0].__class__
forward = minference_with_snapkv_forward()
def update_module(m):
if isinstance(m, Attention):
m.init_minference_parameters = init_minference_parameters.__get__(
m, Attention
)
m.gather_last_q_vertical_slash_topk_v4 = (
gather_last_q_vertical_slash_topk_v4.__get__(m, Attention)
)
m.forward = forward.__get__(m, Attention)
if isinstance(m, DecoderLayer):
m.forward = forward_llama_decoder_layer.__get__(m, DecoderLayer)
model.apply(update_module)
model.prepare_inputs_for_generation = prepare_inputs_for_generation_snapkv.__get__(
model, model.__class__
)
model.model._use_sdpa = False
model.model._prepare_decoder_attention_mask = (
_prepare_decoder_attention_mask_inference.__get__(
model.model, model.model.__class__
)
)
model.model.forward = forward_llama_model.__get__(
model.model, model.model.__class__
)
model.forward = forward_llama_for_causal_lm.__get__(model, model.__class__)
print("Patched model for minference with SanpKV..")
return model
def llama_model_forward_vllm(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
attn_metadata,
residual,
layer_idx=i,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
def llama_layer_forward_vllm(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata,
residual: Optional[torch.Tensor],
layer_idx: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
layer_idx=layer_idx,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
def llama_attn_forward_vllm(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata,
layer_idx: int,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata, self.kv_scale, layer_idx)
output, _ = self.o_proj(attn_output)
return output
def vllm_attn_forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: Optional[torch.Tensor],
attn_metadata,
kv_scale: float = 1.0,
layer_idx: int = 0,
) -> torch.Tensor:
return self.impl.forward(
query, key, value, kv_cache, attn_metadata, kv_scale, layer_idx
)
def minference_patch_vllm(
llm,
config_file,
):
from vllm.attention import Attention
from vllm.model_executor.models.llama import (
LlamaAttention,
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaModel,
)
config = json.load(open(config_file))
attn_forward = minference_vllm_forward(config)
def update_module(m):
if isinstance(m, Attention):
m.forward = vllm_attn_forward.__get__(m, Attention)
m = m.impl
m_cls = m.__class__
m.gather_last_q_vertical_slash_topk_vllm = (
gather_last_q_vertical_slash_topk_vllm.__get__(m, m_cls)
)
m.forward = attn_forward.__get__(m, m_cls)
if isinstance(m, LlamaDecoderLayer):
m.forward = llama_layer_forward_vllm.__get__(m, LlamaDecoderLayer)
if isinstance(m, LlamaModel):
m.forward = llama_model_forward_vllm.__get__(m, LlamaModel)
if isinstance(m, LlamaAttention):
m.forward = llama_attn_forward_vllm.__get__(m, LlamaAttention)
llm.llm_engine.model_executor.driver_worker.model_runner.model.apply(update_module)
print("Patched model for minference with VLLM..")
return llm
def patch_hf(
model,
attn_type: str = "inf_llm",
attn_kwargs: dict = {},
base=None,
distance_scale=None,
**kwargs,
):
attn_kwargs.update(kwargs)
# This approach lacks scalability and will be refactored.
from transformers import LlamaForCausalLM, MistralForCausalLM, Qwen2ForCausalLM
from transformers.models.llama.modeling_llama import (
BaseModelOutputWithPast,
LlamaAttention,
LlamaModel,
)
from transformers.models.mistral.modeling_mistral import (
MistralAttention,
MistralModel,
)
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2Model
def model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
*args,
**kwargs,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if hasattr(self, "config") and hasattr(self.config, "scale_emb"):
inputs_embeds = inputs_embeds * self.config.scale_emb
if use_cache:
pkv = tuple()
else:
pkv = None
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for i, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=self.position_bias,
past_key_value=(
past_key_values[i] if past_key_values is not None else None
),
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
_cache = layer_outputs[2 if output_attentions else 1]
pkv = pkv + (_cache,)
if output_attentions:
all_self_attns += (layer_outputs[1],)
# hidden_states = self.norm(hidden_states)
for start_idx in range(0, hidden_states.size(1), 32000):
end_idx = min(hidden_states.size(1), start_idx + 32000)
hidden_states[:, start_idx:end_idx, :] = self.norm(
hidden_states[:, start_idx:end_idx, :]
)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, pkv, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=pkv,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
forward = huggingface_forward(ATTN_FORWRAD[attn_type](**attn_kwargs))
if isinstance(model, LlamaForCausalLM):
Attention = model.model.layers[0].self_attn.__class__
Model = model.model.__class__
elif isinstance(model, MistralForCausalLM):
Attention = model.model.layers[0].self_attn.__class__
Model = model.model.__class__
elif isinstance(model, Qwen2ForCausalLM):
Attention = model.model.layers[0].self_attn.__class__
Model = model.model.__class__
elif model.__class__.__name__ == "MiniCPMForCausalLM":
Attention = model.model.layers[0].self_attn.__class__
Model = model.model.__class__
elif model.__class__.__name__ == "Phi3ForCausalLM":
Attention = model.model.layers[0].self_attn.__class__
Model = model.model.__class__
else:
raise ValueError("Only supports llama, mistral and qwen2 models.")
hf_rope = model.model.layers[0].self_attn.rotary_emb
base = base if base is not None else hf_rope.base
distance_scale = distance_scale if distance_scale is not None else 1.0
rope = RotaryEmbeddingESM(hf_rope.dim, base, distance_scale)
model.model.position_bias = rope
model.model.hf_position_bias = hf_rope
def set_forward(m):
if isinstance(m, Attention):
m._old_forward = m.forward
m.forward = forward.__get__(m, Attention)
model.apply(set_forward)
model._old_prepare_inputs_for_generation = model.prepare_inputs_for_generation
model.prepare_inputs_for_generation = prepare_inputs_for_generation.__get__(
model, model.__class__
)
model.model._old_forward = model.model.forward
model.model.forward = model_forward.__get__(model.model, Model)
if attn_type == "inf_llm":
tokenizer = transformers.AutoTokenizer.from_pretrained(
model.config._name_or_path
)
model = InfLLMGenerator(model, tokenizer)
print("Patched model ...")
return model
def fp8_cache_update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
Return:
A tuple containing the updated key and value states.
"""
# Update the number of seen tokens
if layer_idx == 0:
self.seen_tokens += key_states.shape[-2]
# Update the cache
if len(self.key_cache) <= layer_idx:
self.key_cache.append(key_states.to(torch.float8_e5m2))
self.value_cache.append(value_states.to(torch.float8_e5m2))
else:
self.key_cache[layer_idx] = torch.cat(
[self.key_cache[layer_idx], key_states.to(torch.float8_e5m2)], dim=-2
)
self.value_cache[layer_idx] = torch.cat(
[self.value_cache[layer_idx], value_states.to(torch.float8_e5m2)], dim=-2
)
return self.key_cache[layer_idx].to(key_states.dtype), self.value_cache[
layer_idx
].to(key_states.dtype)
def cpu_cache_update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if layer_idx == 0:
if "_seen_tokens" in self.__dict__:
self._seen_tokens += key_states.shape[-2]
else:
self.seen_tokens += key_states.shape[-2]
# Update the cache
if len(self.key_cache) <= layer_idx:
self.key_cache.append(key_states.cpu())
self.value_cache.append(value_states.cpu())
else:
self.key_cache[layer_idx] = torch.cat(
[self.key_cache[layer_idx], key_states.cpu()], dim=-2
)
self.value_cache[layer_idx] = torch.cat(
[self.value_cache[layer_idx], value_states.cpu()], dim=-2
)
def cpu_cache_get(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
head_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if layer_idx == 0:
if "_seen_tokens" in self.__dict__:
self._seen_tokens += key_states.shape[-2]
else:
self.seen_tokens += key_states.shape[-2]
# Update the cache
if len(self.key_cache) <= layer_idx:
return key_states, value_states
else:
key_states = torch.cat(
[self.key_cache[layer_idx][:, head_idx : head_idx + 1].cuda(), key_states],
dim=-2,
)
value_states = torch.cat(
[
self.value_cache[layer_idx][:, head_idx : head_idx + 1].cuda(),
value_states,
],
dim=-2,
)
return key_states, value_states
|