File size: 16,648 Bytes
43a7079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import math
import time
import warnings
from importlib.metadata import version
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
from transformers.cache_utils import Cache, DynamicCache
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
from transformers.utils import logging

logger = logging.get_logger(__name__)


# https://github.com/huggingface/transformers/blob/v4.37-release/src/transformers/models/llama/modeling_llama.py
def llama_flash_attn2_forward(
    self,
    hidden_states: torch.Tensor,
    attention_mask: Optional[torch.LongTensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_value: Optional[Cache] = None,
    output_attentions: bool = False,
    use_cache: bool = False,
    **kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    # [SnapKV] register kv_cluster
    init_snapkv(self)
    # LlamaFlashAttention2 attention does not support output_attentions
    if "padding_mask" in kwargs:
        warnings.warn(
            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
        )

        # overwrite attention_mask with padding_mask
        attention_mask = kwargs.pop("padding_mask")

    output_attentions = False

    bsz, q_len, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    # Flash attention requires the input to have the shape
    # batch_size x seq_length x head_dim x hidden_dim
    # therefore we just need to keep the original shape
    query_states = query_states.view(
        bsz, q_len, self.num_heads, self.head_dim
    ).transpose(1, 2)
    key_states = key_states.view(
        bsz, q_len, self.num_key_value_heads, self.head_dim
    ).transpose(1, 2)
    value_states = value_states.view(
        bsz, q_len, self.num_key_value_heads, self.head_dim
    ).transpose(1, 2)

    kv_seq_len = key_states.shape[-2]
    # if past_key_value is not None:
    #     kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
    if past_key_value is not None:
        if self.layer_idx is None:
            raise ValueError(
                f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                "with a layer index."
            )
        if hasattr(self, "kv_seq_len"):  # [SnapKV] add kv_seq_len
            if self.kv_seq_len != 0:
                kv_seq_len += self.kv_seq_len
            else:
                kv_seq_len += past_key_value.get_usable_length(
                    kv_seq_len, self.layer_idx
                )
        else:
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
    query_states, key_states = apply_rotary_pos_emb(
        query_states, key_states, cos, sin, position_ids
    )
    # [SnapKV] move to ahead
    key_states = repeat_kv(key_states, self.num_key_value_groups)
    value_states = repeat_kv(value_states, self.num_key_value_groups)

    if past_key_value is not None:
        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
        # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
        # print('kv_seq_len:', kv_seq_len)
        # print('key_states.shape:', key_states.shape)
        if key_states.shape[-2] == kv_seq_len:  # [SnapKV] add kv_cluster
            self.kv_seq_len = kv_seq_len  # [SnapKV] register kv_seq_len
            key_states_compress, value_states_compress = self.kv_cluster.update_kv(
                key_states,
                query_states,
                value_states,
                attention_mask,
                self.num_key_value_groups,
            )
            past_key_value.update(
                key_states_compress, value_states_compress, self.layer_idx, cache_kwargs
            )
        else:
            self.kv_seq_len += q_len
            key_states, value_states = past_key_value.update(
                key_states, value_states, self.layer_idx, cache_kwargs
            )

    # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
    # to be able to avoid many of these transpose/reshape/view.
    query_states = query_states.transpose(1, 2)
    key_states = key_states.transpose(1, 2)
    value_states = value_states.transpose(1, 2)

    dropout_rate = self.attention_dropout if self.training else 0.0

    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
    # therefore the input hidden states gets silently casted in float32. Hence, we need
    # cast them back in the correct dtype just to be sure everything works as expected.
    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
    # in fp32. (LlamaRMSNorm handles it correctly)

    input_dtype = query_states.dtype
    if input_dtype == torch.float32:
        if torch.is_autocast_enabled():
            target_dtype = torch.get_autocast_gpu_dtype()
        # Handle the case where the model is quantized
        elif hasattr(self.config, "_pre_quantization_dtype"):
            target_dtype = self.config._pre_quantization_dtype
        else:
            target_dtype = self.q_proj.weight.dtype

        logger.warning_once(
            f"The input hidden states seems to be silently casted in float32, this might be related to"
            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
            f" {target_dtype}."
        )

        query_states = query_states.to(target_dtype)
        key_states = key_states.to(target_dtype)
        value_states = value_states.to(target_dtype)

    attn_output = self._flash_attention_forward(
        query_states,
        key_states,
        value_states,
        attention_mask,
        q_len,
        dropout=dropout_rate,
    )

    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
    attn_output = self.o_proj(attn_output)

    if not output_attentions:
        attn_weights = None

    return attn_output, attn_weights, past_key_value


def prepare_inputs_for_generation_llama(
    self,
    input_ids,
    past_key_values=None,
    attention_mask=None,
    inputs_embeds=None,
    **kwargs,
):
    if past_key_values is None:  # [SnapKV]
        for layer in self.model.layers:
            layer.self_attn.kv_seq_len = 0
    if past_key_values is not None:
        if isinstance(past_key_values, Cache):
            cache_length = past_key_values.get_seq_length()
            past_length = past_key_values.seen_tokens
            max_cache_length = past_key_values.get_max_length()
        else:
            # cache_length = past_length = past_key_values[0][0].shape[2]
            # max_cache_length = None
            cache_length = past_length = self.model.layers[0].self_attn.kv_seq_len
            max_cache_length = None
        # Keep only the unprocessed tokens:
        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
        # input)
        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
        # input_ids based on the past_length.
        elif past_length < input_ids.shape[1]:
            input_ids = input_ids[:, past_length:]
        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
        if (
            max_cache_length is not None
            and attention_mask is not None
            and cache_length + input_ids.shape[1] > max_cache_length
        ):
            attention_mask = attention_mask[:, -max_cache_length:]

    position_ids = kwargs.get("position_ids", None)
    if attention_mask is not None and position_ids is None:
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill_(attention_mask == 0, 1)
        if past_key_values:
            position_ids = position_ids[:, -input_ids.shape[1] :]

    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
    if inputs_embeds is not None and past_key_values is None:
        model_inputs = {"inputs_embeds": inputs_embeds}
    else:
        model_inputs = {"input_ids": input_ids}

    model_inputs.update(
        {
            "position_ids": position_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
        }
    )
    return model_inputs


llama_flash_attn2_forward_4_37 = llama_flash_attn2_forward
prepare_inputs_for_generation_llama_4_37 = prepare_inputs_for_generation_llama


@torch.no_grad()
def rope_forward(self, x, seq_len):
    # x: [bs, num_attention_heads, seq_len, head_size]
    position_ids = torch.arange(seq_len, device=x.device).unsqueeze(0)
    inv_freq_expanded = (
        self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
    )
    position_ids_expanded = position_ids[:, None, :].float()
    # Force float32 since bfloat16 loses precision on long contexts
    # See https://github.com/huggingface/transformers/pull/29285
    device_type = x.device.type
    device_type = (
        device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
    )
    with torch.autocast(device_type=device_type, enabled=False):
        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(
            1, 2
        )
        emb = torch.cat((freqs, freqs), dim=-1)
        cos = emb.cos()
        sin = emb.sin()
    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


##################

# perform qk calculation and get indices
# this version will not update in inference mode


# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(
        batch, num_key_value_heads, n_rep, slen, head_dim
    )
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class SnapKVCluster:
    def __init__(
        self,
        window_size=64,
        max_capacity_prompt=256 + 64,
        kernel_size=5,
        pooling="avgpool",
    ):
        self.window_size = window_size
        self.max_capacity_prompt = max_capacity_prompt
        assert self.max_capacity_prompt - self.window_size > 0
        self.kernel_size = kernel_size
        self.pooling = pooling

    def reset(
        self,
        window_size=64,
        max_capacity_prompt=256 + 64,
        kernel_size=5,
        pooling="avgpool",
    ):
        self.window_size = window_size
        self.max_capacity_prompt = max_capacity_prompt
        assert self.max_capacity_prompt - self.window_size > 0
        self.kernel_size = kernel_size
        self.pooling = pooling

    def update_kv(
        self,
        key_states,
        query_states,
        value_states,
        attention_mask,
        num_key_value_groups,
    ):
        # check if prefix phase
        assert key_states.shape[-2] == query_states.shape[-2]
        bsz, num_heads, q_len, head_dim = query_states.shape
        if q_len < self.max_capacity_prompt:
            return key_states, value_states
        else:
            attn_weights = torch.matmul(
                query_states[..., -self.window_size :, :], key_states.transpose(2, 3)
            ) / math.sqrt(head_dim)
            mask = torch.full(
                (self.window_size, self.window_size),
                torch.finfo(attn_weights.dtype).min,
                device=attn_weights.device,
            )
            mask_cond = torch.arange(mask.size(-1), device=attn_weights.device)
            mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
            mask = mask.to(attn_weights.device)
            attention_mask = mask[None, None, :, :]

            attn_weights[
                :, :, -self.window_size :, -self.window_size :
            ] += attention_mask

            attn_weights = nn.functional.softmax(
                attn_weights, dim=-1, dtype=torch.float32
            ).to(query_states.dtype)
            attn_weights_sum = attn_weights[
                :, :, -self.window_size :, : -self.window_size
            ].sum(dim=-2)
            if self.pooling == "avgpool":
                attn_cache = F.avg_pool1d(
                    attn_weights_sum,
                    kernel_size=self.kernel_size,
                    padding=self.kernel_size // 2,
                    stride=1,
                )
            elif self.pooling == "maxpool":
                attn_cache = F.max_pool1d(
                    attn_weights_sum,
                    kernel_size=self.kernel_size,
                    padding=self.kernel_size // 2,
                    stride=1,
                )
            else:
                raise ValueError("Pooling method not supported")
            indices = attn_cache.topk(
                self.max_capacity_prompt - self.window_size, dim=-1
            ).indices
            indices = indices.unsqueeze(-1).expand(-1, -1, -1, head_dim)
            k_past_compress = key_states[:, :, : -self.window_size, :].gather(
                dim=2, index=indices
            )
            v_past_compress = value_states[:, :, : -self.window_size, :].gather(
                dim=2, index=indices
            )
            k_cur = key_states[:, :, -self.window_size :, :]
            v_cur = value_states[:, :, -self.window_size :, :]
            key_states = torch.cat([k_past_compress, k_cur], dim=2)
            value_states = torch.cat([v_past_compress, v_cur], dim=2)
            return key_states, value_states


def init_snapkv(self):
    if not hasattr(self, "kv_cluster"):
        if not hasattr(self.config, "window_size"):
            self.config.window_size = 64
        if not hasattr(self.config, "max_capacity_prompt"):
            self.config.max_capacity_prompt = 4096
        if not hasattr(self.config, "kernel_size"):
            self.config.kernel_size = 13
        if not hasattr(self.config, "pooling"):
            self.config.pooling = "avgpool"
    self.kv_cluster = SnapKVCluster(
        window_size=self.config.window_size,
        max_capacity_prompt=self.config.max_capacity_prompt,
        kernel_size=self.config.kernel_size,
        pooling=self.config.pooling,
    )


############


def check_version():
    try:
        transformers_version = version("transformers")
    except Exception as e:
        print(f"Transformers not installed: {e}")
    return transformers_version


def replace_llama():
    transformers_version = check_version()
    version_list = ["4.37"]
    warning_flag = True
    for version in version_list:
        if version in transformers_version:
            warning_flag = False
            break
    if warning_flag:
        warnings.warn(
            f"Transformers version {transformers_version} might not be compatible with SnapKV. SnapKV is tested with Transformers version {version_list}."
        )
    transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation = (
        prepare_inputs_for_generation_llama_4_37
    )
    transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward = (
        llama_flash_attn2_forward_4_37
    )