Spaces:
Running
on
Zero
Running
on
Zero
File size: 40,699 Bytes
24083d5 43a7079 24083d5 43a7079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 |
# Copyright (c) 2024 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import inspect
import json
import os
from importlib import import_module
from transformers.models.llama.modeling_llama import *
from transformers.utils.import_utils import _is_package_available
if _is_package_available("vllm"):
from vllm.attention.backends.flash_attn import *
from ..ops.block_sparse_flash_attention import block_sparse_attention
from ..ops.pit_sparse_flash_attention_v2 import vertical_slash_sparse_attention
from ..ops.streaming_kernel import streaming_forward, streaming_forward2
from .snap_kv import *
last_q = 64
arange = torch.arange(last_q, device="cuda")
LAST_Q_MASK = arange[None, None, :, None] >= arange[None, None, None, :]
ROPE_TYPE = None
SEARCH_MASK = None
def init_minference_parameters(self):
config = self.config.to_dict()
self.starting_layer = config.get("starting_layer", 0)
self.is_search = config.get("is_search", False)
# self.n_init = config.get("n_init", 128)
# self.n_local = config.get("n_local", 3968)
self.ne_inf = None
self.config_path = config.get("config_path", "")
if os.path.exists(self.config_path) and self.layer_idx < len(json.load(open(self.config_path))):
self.best_pattern = {int(ii): jj for ii, jj in json.load(open(self.config_path))[self.layer_idx].items()}
else:
self.best_pattern = {}
self.vertical, self.slash = None, None
# import apply_rotary_pos_emb
if "apply_rotary_pos_emb" not in self.__dict__:
global apply_rotary_pos_emb
model_path = self.rotary_emb.__class__.__module__
apply_rotary_pos_emb = getattr(import_module(model_path), "apply_rotary_pos_emb")
self.apply_rotary_pos_emb = True
def sum_all_diagonal_matrix(mat: torch.tensor):
b, h, n, m = mat.shape
zero_mat = torch.zeros((b, h, n, n)).to(mat.device) # Zero matrix used for padding
mat_padded = torch.cat((zero_mat, mat, zero_mat), -1) # pads the matrix on left and right
mat_strided = mat_padded.as_strided((1, 1, n, n + m), (1, n * (2 * n + m), 2 * n + m + 1, 1)) # Change the strides
sum_diags = torch.sum(mat_strided, 2) # Sums the resulting matrix's columns
return sum_diags[:,:,1:]
def gather(t, dim, i):
"""A broadcasting version of torch.gather."""
dim += (dim < 0) * t.ndim
return t.gather(dim, i.expand(*t.shape[:dim], i.shape[dim], *t.shape[dim + 1 :]))
def gather_qkv(q, k, v, attention_mask):
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(q.size(-1)) + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
attn_output = torch.matmul(attn_weights, v)
return attn_output
def search_pattern(q, k, head):
q_len = q.shape[2]
head_dim = q.shape[-1]
def vertical_and_slash(vertical_size, slash_size):
last_q = 64
q_len = q.shape[2]
qk_idxs = [ii + q_len for ii in list(range(-last_q, 0, 1))]
qk = torch.matmul(q[:,:,qk_idxs,:], k.transpose(2, 3))/ math.sqrt(head_dim) + attention_mask[:,:,qk_idxs]
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
vertical = qk.sum(-2, keepdim=True)
vertical[...,:30] = 10000
vertical_topk = torch.topk(-vertical, q_len - vertical_size, -1).indices
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
slash[...,-30:] = 10000
slash_topk = slash
slash = torch.topk(slash, slash_size, -1).indices - (q_len - 1)
slash = torch.stack([torch.sparse.spdiags(torch.ones(slash_size, q_len), slash.cpu()[0][_], (q_len, q_len)).to_dense() for _ in range(1)]).to(q.device)
est_attn = torch.ones_like(attn_weights)
dim = 3
est_attn = est_attn.scatter(3, vertical_topk.expand(*est_attn.shape[:dim], vertical_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0)
est_attn = est_attn + slash
est_attn = (est_attn > 0).float()
est_attn = torch.tril(est_attn)
attn_weights_x = attn_weights * est_attn
res3 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy()
return res3
def stream_llm(vertical_size, slash_size):
q_len = q.shape[2]
mask = torch.triu(torch.tril(torch.ones(q_len, q_len), 0), -slash_size).to(q)
mask[:,:vertical_size] = 1
mask = mask.unsqueeze(0).unsqueeze(1)
est_attn = torch.tril(mask)
attn_weights_x = attn_weights * est_attn
res3 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy()
return res3
def block_sparse(topk_ratio, slash_size=None):
block_num = (q_len -1) // 32 + 1
block_q = torch.zeros(1,1,block_num * 32,head_dim).to(q)
block_q[:,:,:q_len] = q
block_q = block_q.reshape(1,1,block_num,32,-1).mean(-2)
block_k = torch.zeros(1,1,block_num * 32,head_dim).to(k)
block_k[:,:,:q_len] = k
block_k = block_k.reshape(1,1,block_num,32,-1).mean(-2)
qk = torch.matmul(block_q, block_k.transpose(2, 3)) + attention_mask[:,:,:block_num,:block_num]
est_attn = torch.ones_like(qk)
block_topk = torch.topk(-qk, block_num - block_num//topk_ratio, -1).indices
dim = 3
est_attn = est_attn.scatter(3, block_topk.expand(*est_attn.shape[:dim], block_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0)
est_attn = est_attn.unsqueeze(3).unsqueeze(-1).repeat(1,1,1,32,1,32).reshape(1,1,block_num * 32, block_num * 32)[...,:q_len,:q_len]
est_attn = torch.tril(est_attn)
attn_weights_x = attn_weights * est_attn
res2 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy()
return res2
global SEARCH_MASK
if SEARCH_MASK is None:
attention_mask = torch.full((q_len, q_len), torch.finfo(q.dtype).min, device="cuda")
mask_cond = torch.arange(attention_mask.size(-1), device="cuda")
attention_mask.masked_fill_(mask_cond < (mask_cond + 1).view(attention_mask.size(-1), 1), 0)
attention_mask = attention_mask[None, None, :]
SEARCH_MASK = attention_mask
else:
attention_mask = SEARCH_MASK
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(head_dim) + attention_mask
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
best_s, best_v, best_score, best_ty = 0, 0, 0, ""
all_info = []
for ty, fc in [("stream_llm", stream_llm), ("vertical_and_slash", vertical_and_slash), ("block_sparse", block_sparse)]:
if ty == "stream_llm":
vs_list = [(100, 800)]
elif ty == "vertical_and_slash":
vs_list = [(30, 800), (100, 750), (500, 700), (3500, 100)]
else:
vs_list = [(8, 1)]
for v_size, s_size in vs_list:
score = fc(v_size, s_size)
score = score.item()
all_info.append([ty, v_size, s_size, score])
if score > best_score:
best_score = score
best_s, best_v = s_size, v_size
best_ty = ty
if best_ty == "stream_llm":
best_ty = "vertical_and_slash"
if best_ty == "block_sparse":
best_ty, best_v, best_s = "vertical_and_slash", 1000, 6096
print(head, best_ty, best_v, best_s, best_score)
return (best_ty, best_v, best_s, best_score)
def search_pattern_v2(q, k, v, head):
q_len = q.shape[2]
head_dim = q.shape[-1]
def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size):
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
last_q = 64
qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k)
qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK, qk[:, :, :, -last_q:], -torch.inf)
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
vertical = qk.sum(-2, keepdim=True)
vertical[...,:30] = torch.inf
vertical_topk = torch.topk(vertical, vertical_size, -1).indices
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
slash[...,-30:] = torch.inf
slash_topk = slash
slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices
return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash)
def dense(q, k, v, vertical_size=None, slash_size=None):
return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, head_dim)
def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None):
topk = 100
return block_sparse_attention(q, k, v, topk)
best_s, best_v, best_score, best_ty = 0, 0, float("inf"), ""
bsz = q.shape[0]
all_info = []
ref = dense(q, k, v)
for ty, fc in [("stream_llm", streaming_forward), ("vertical_and_slash", vertical_and_slash_kernel), ("block_sparse", block_sparse_kernel)]:
if ty == "stream_llm":
vs_list = [(100, 800)]
elif ty == "vertical_and_slash":
vs_list = [(30, 800), (100, 800), (100, 750), (500, 700), (3500, 100), (1000, 4096)]
else:
vs_list = [(10, 1)]
for v_size, s_size in vs_list:
score = fc(q, k, v, v_size, s_size)
# delta = (ref - score).abs().sum()
delta = ((ref - score).abs() > 5e-3).sum()
score = delta.item()
all_info.append([ty, v_size, s_size, score])
if score < best_score:
best_score = score
best_s, best_v = s_size, v_size
best_ty = ty
print(head, best_ty, best_v, best_s, best_score)
return all_info
def shift_matrix(mat):
b, h, _, n = mat.shape
zero_mat = torch.zeros((b, h, n, n)).to(mat.device) # Zero matrix used for padding
mat_padded = torch.cat((zero_mat, mat, zero_mat), -1) # pads the matrix on left and right
mat_strided = mat_padded.as_strided((1, 1, n, n + 2 * n), (1, n * (2 * n + n), 2 * n + n - 1, 1)) # Change the strides
return mat_strided[...,2 * n-1:-1]
def repeat(self, q, k, v, attention_mask):
q_len = q.shape[2]
if q_len == 1:
return gather_qkv(q, k, v, attention_mask)
qk = torch.matmul(q[:,:,-1:,:], k.transpose(2, 3)) / math.sqrt(self.head_dim)
qk = qk.repeat(1,1,q_len, 1)
qk = shift_matrix(qk) + attention_mask
attn_weights = nn.functional.softmax(qk, dim=-1, dtype=torch.float32).to(q.dtype)
attn_output = torch.matmul(attn_weights, v)
return attn_output
def gather_last_q_vertical_slash_topk_v4(self, q, k, v, head_id):
kv_seq_len = k.size(2)
def vertical_and_slash(attn_weights, vertical_size, slash_size):
last_q = 64
q_len = q.shape[2]
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
qk_idxs = [ii + q_len for ii in list(range(-last_q, 0, 1))]
qk = torch.matmul(q[:,:,qk_idxs,:], k.transpose(2, 3))/ math.sqrt(self.head_dim) + attention_mask[:,:,qk_idxs]
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
vertical = qk.sum(-2, keepdim=True)
vertical[...,:30] = -self.ne_inf
vertical_topk = torch.topk(-vertical, q_len - vertical_size, -1).indices
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
slash[...,-30:] = -self.ne_inf
slash_topk = slash
slash = torch.topk(slash, slash_size, -1).indices - (q_len - 1)
slash = torch.stack([torch.sparse.spdiags(torch.ones(slash_size, q_len), slash.cpu()[0][_], (q_len, q_len)).to_dense() for _ in range(1)]).to(q.device)
est_attn = torch.ones_like(attn_weights)
dim = 3
est_attn = est_attn.scatter(3, vertical_topk.expand(*est_attn.shape[:dim], vertical_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0)
est_attn = est_attn + slash
est_attn = (est_attn > 0).float()
est_attn = torch.tril(est_attn)
est_attn = (est_attn == 0).int() * self.ne_inf
attn_weights = attn_weights + est_attn
if self.kv_cache_compressed_v4:
self.vertical = torch.topk(vertical, vertical_size * 4, -1).indices
self.slash = (torch.topk(slash_topk, slash_size * 4, -1).indices - (q_len - 1)).unsqueeze(2)
return attn_weights
def stream_llm(attn_weights, vertical_size, slash_size):
q_len = q.shape[2]
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
mask = torch.triu(torch.tril(torch.ones(q_len, q_len), 0), -slash_size).to(q)
mask[:,:vertical_size] = 1
mask = mask.unsqueeze(0).unsqueeze(1)
est_attn = torch.tril(mask)
est_attn = (est_attn == 0).int() * self.ne_inf
attn_weights = attn_weights + est_attn
if self.kv_cache_compressed_v4:
self.vertical = torch.Tensor(list(range(vertical_size * 4))).long().to(q.device).unsqueeze(0).unsqueeze(0).unsqueeze(0)
self.slash = torch.Tensor(list(range(-slash_size * 4, 1))).long().to(q.device).unsqueeze(0).unsqueeze(0).unsqueeze(0)
return attn_weights
def block_sparse(attn_weights, topk_ratio, slash_size=None, block_size=8):
block_num = (q_len -1) // block_size + 1
block_q = torch.zeros(1,1,block_num * block_size,head_dim).to(q)
block_q[:,:,:q_len] = q
block_q = block_q.reshape(1,1,block_num,block_size,-1).mean(-2)
block_k = torch.zeros(1,1,block_num * block_size,head_dim).to(k)
block_k[:,:,:q_len] = k
block_k = block_k.reshape(1,1,block_num,block_size,-1).mean(-2)
qk = torch.matmul(block_q, block_k.transpose(2, 3)) + attention_mask[:,:,:block_num,:block_num]
est_attn = torch.ones_like(qk)
block_topk = torch.topk(-qk, block_num - block_num//topk_ratio, -1).indices
dim = 3
est_attn = est_attn.scatter(3, block_topk.expand(*est_attn.shape[:dim], block_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0)
est_attn = est_attn.unsqueeze(3).unsqueeze(-1).repeat(1,1,1,block_size,1,block_size).reshape(1,1,block_num * block_size, block_num * block_size)[...,:q_len,:q_len]
est_attn = torch.tril(est_attn)
est_attn = (est_attn == 0).int()
attn_weights = attn_weights + est_attn
return attn_weights
def dialted(q,k,v, type):
q_len = q.shape[2]
n_init = min(1024, q_len)
vertical_topk = torch.arange(0, n_init, device=q.device)[None, None, None, :]
slash = torch.arange(0, q_len, device=q.device)
if type == 'dilated1':
# 8k local with 1 interval
slash = slash[-8192::2][None, None, :]
elif type == 'dilated2':
# 2k dense local + 4k local with 1 interval
slash = torch.cat([slash[-2048:], slash[-6144:-2048:2]], 0)[None, None, :]
slash = (q_len - 1) - slash
return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash)
def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size):
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
last_q = min(64, q_len)
qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k)
qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK[...,-last_q:,-last_q:].to(q.device), qk[:, :, :, -last_q:], -torch.inf)
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
vertical = qk.sum(-2, keepdim=True)
vertical[...,:30] = torch.inf
vertical_topk = torch.topk(vertical, vertical_size, -1).indices
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
slash[...,-100:] = torch.inf
slash_topk = slash
slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices
return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash)
def vertical_and_slash_kernel_static(q, k, v, vertical_size, slash_size):
if "vs" in self.__dict__:
vertical_topk, slash = self.vs
else:
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
last_q = 64
qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k)
qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK, qk[:, :, :, -last_q:], -torch.inf)
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
vertical = qk.sum(-2, keepdim=True)
vertical[...,:30] = torch.inf
vertical_topk = torch.topk(vertical, vertical_size, -1).indices
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
slash[...,-30:] = torch.inf
slash_topk = slash
slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices
self.vs = vertical_topk, slash
return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash)
def dense(q, k, v, vertical_size=None, slash_size=None):
return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, self.head_dim)
def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None):
topk = 100
return block_sparse_attention(q, k, v, topk)
q_len = q.shape[2]
bsz = q.shape[0]
if self.config.to_dict().get("dilated1", False):
return dialted(q, k, v, 'dilated1')
if self.config.to_dict().get("dilated2", False):
return dialted(q, k, v, 'dilated2')
if self.config.to_dict().get("dense", False):
return dense(q, k, v)
if self.config.to_dict().get("streaming", False):
return streaming_forward(q, k, v, self.config.streaming_kwargs["n_init"], self.config.streaming_kwargs["n_local"])
ty, vertical_size, slash_size, _ = self.best_pattern.get(head_id, ("vertical_and_slash", 1000, 6096, 1))
if self.config.to_dict().get("static_pattern", False):
return vertical_and_slash_kernel_static(q, k, v, vertical_size, slash_size)
if self.config.to_dict().get("vs_only", False):
return vertical_and_slash_kernel(q, k, v, vertical_size, slash_size)
if q_len == 1:
return dense(q, k, v)
fc = {
"stream_llm": streaming_forward,
"vertical_and_slash": vertical_and_slash_kernel,
"block_sparse": block_sparse_kernel,
}[ty]
return fc(q, k, v, vertical_size, slash_size)
def apply_rotary_pos_emb_single(q, cos, sin, position_ids, unsqueeze_dim=1):
# cos = cos[position_ids].unsqueeze(unsqueeze_dim)
# sin = sin[position_ids].unsqueeze(unsqueeze_dim)
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
return (q * cos) + (rotate_half(q) * sin)
def minference_forward():
def forward(
self,
hidden_states,
attention_mask,
position_ids,
past_key_value,
output_attentions,
use_cache,
**kwargs,
):
self.init_minference_parameters()
self.ne_inf = torch.finfo(hidden_states.dtype).min
bsz, q_len, _ = hidden_states.size()
if "q_proj" in self.__dict__["_modules"]:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
else:
qkv = self.qkv_proj(hidden_states)
query_pos = self.num_heads * self.head_dim
query_states, key_states, value_states = torch.split(qkv, query_pos, -1)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
global ROPE_TYPE
if ROPE_TYPE is None:
ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters
if ROPE_TYPE:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
else:
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if self.is_search:
if os.path.exists(self.config_path):
config_list = json.load(open(self.config_path))
if self.layer_idx < len(config_list):
assert False
else:
config_list = []
config = {}
print("Layer", self.layer_idx)
if q_len != 1:
output = torch.empty_like(query_states)
for head in range(query_states.size(1)):
q = query_states[:, head, :, :].unsqueeze(1)
k = key_states[:, head, :, :].unsqueeze(1)
v = value_states[:, head, :, :].unsqueeze(1)
if self.is_search:
config[head] = search_pattern(q, k, head)
if self.layer_idx >= self.starting_layer and not self.is_search:
attn_output = self.gather_last_q_vertical_slash_topk_v4(q, k, v, head)
elif is_flash_attn_2_available():
attn_output = flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, self.head_dim)
else:
attn_output = gather_qkv(q, k, v, attention_mask)
output[:, head:head + 1] = attn_output
if self.is_search:
config_list.append(config)
with open(self.config_path, 'w') as json_file:
json.dump(config_list, json_file)
else:
output = flash_attn_func(query_states.transpose(1, 2), key_states.transpose(1, 2), value_states.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, query_states.size(1), q_len, self.head_dim)
attn_output = output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
return forward
def minference_kv_cache_cpu_forward():
def forward(
self,
hidden_states,
attention_mask,
position_ids,
past_key_value,
output_attentions,
use_cache,
**kwargs,
):
self.init_minference_parameters()
self.ne_inf = torch.finfo(hidden_states.dtype).min
bsz, q_len, hidden_dim = hidden_states.size()
kv_seq_len = q_len
if use_cache and past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
global ROPE_TYPE
if ROPE_TYPE is None:
ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters
if ROPE_TYPE:
cos, sin = self.rotary_emb(hidden_states, seq_len=kv_seq_len)
else:
cos, sin = self.rotary_emb(hidden_states, position_ids)
cache_kwargs = {"sin": sin, "cos": cos}
attn_out = torch.empty_like(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
act_num_heads = self.num_heads // self.num_key_value_groups
if use_cache:
k = torch.zeros(bsz, act_num_heads, q_len, self.head_dim).to(hidden_states.dtype).cpu()
v = torch.zeros(bsz, act_num_heads, q_len, self.head_dim).to(hidden_states.dtype).cpu()
part_k, part_v = None, None
for head in range(self.num_heads):
if "q_proj" in self.__dict__["_modules"]:
part_q = F.linear(hidden_states, self.q_proj.weight.view(self.num_heads, self.head_dim, hidden_dim)[head]).unsqueeze(2)
else:
part_q = F.linear(hidden_states, self.qkv_proj.weight.view(3, self.num_heads, self.head_dim, hidden_dim)[0][head]).unsqueeze(2)
part_q = apply_rotary_pos_emb_single(part_q.transpose(1, 2), cos, sin, position_ids)
if head % self.num_key_value_groups == 0:
if "q_proj" in self.__dict__["_modules"]:
part_k = F.linear(hidden_states, self.k_proj.weight.view(act_num_heads, self.head_dim, hidden_dim)[head // self.num_key_value_groups]).unsqueeze(2)
part_v = F.linear(hidden_states, self.v_proj.weight.view(act_num_heads, self.head_dim, hidden_dim)[head // self.num_key_value_groups]).unsqueeze(2).transpose(1, 2)
else:
part_k = F.linear(hidden_states, self.qkv_proj.weight.view(3, act_num_heads, self.head_dim, hidden_dim)[1][head // self.num_key_value_groups]).unsqueeze(2)
part_v = F.linear(hidden_states, self.qkv_proj.weight.view(3, act_num_heads, self.head_dim, hidden_dim)[2][head // self.num_key_value_groups]).unsqueeze(2).transpose(1, 2)
part_k = apply_rotary_pos_emb_single(part_k.transpose(1, 2), cos, sin, position_ids)
if use_cache and past_key_value is not None:
k[:,head // self.num_key_value_groups] = part_k.cpu()
v[:,head // self.num_key_value_groups] = part_v.cpu()
part_k, part_v = past_key_value.get(part_k, part_v, self.layer_idx, head // self.num_key_value_groups, cache_kwargs)
if self.layer_idx >= self.starting_layer:
part_o = self.gather_last_q_vertical_slash_topk_v4(part_q, part_k, part_v, head)
else:
part_o = flash_attn_func(part_q, part_k, part_v.transpose(1, 2), 0.0, softmax_scale=None, causal=True).view(bsz, part_q.shape[1], self.head_dim)
attn_out[:, :, head, :] = part_o
if use_cache and past_key_value is not None:
past_key_value.update(k, v, self.layer_idx, cache_kwargs)
torch.matmul(attn_out.view(bsz, q_len, hidden_dim), self.o_proj.weight.T, out=hidden_states)
torch.cuda.empty_cache()
return (hidden_states, None, past_key_value)
return forward
def minference_with_snapkv_forward():
def forward(
self,
hidden_states,
attention_mask,
position_ids,
past_key_value,
output_attentions,
use_cache,
**kwargs,
):
self.init_minference_parameters()
self.ne_inf = torch.finfo(hidden_states.dtype).min
init_snapkv(self)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
if hasattr(self, "kv_seq_len"): #[SnapKV] add kv_seq_len
if self.kv_seq_len != 0:
kv_seq_len += self.kv_seq_len
else:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
else:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
global ROPE_TYPE
if ROPE_TYPE is None:
ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters
if ROPE_TYPE:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
else:
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
if key_states.shape[-2] == kv_seq_len: # [SnapKV] add kv_cluster
self.kv_seq_len = kv_seq_len # [SnapKV] register kv_seq_len
key_states_compress, value_states_compress = self.kv_cluster.update_kv(key_states, query_states, value_states, attention_mask, self.num_key_value_groups)
past_key_value.update(key_states_compress, value_states_compress, self.layer_idx, cache_kwargs)
else:
self.kv_seq_len += q_len
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
if self.layer_idx >= self.starting_layer:
assert query_states.size(1) == key_states.size(1) == value_states.size(1)
output = torch.empty_like(query_states)
for head in range(query_states.size(1)):
q = query_states[:, head, :, :].unsqueeze(1)
k = key_states[:, head, :, :].unsqueeze(1)
v = value_states[:, head, :, :].unsqueeze(1)
output[:, head:head + 1] = self.gather_last_q_vertical_slash_topk_v4(q, k, v, head)
attn_output = output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
else:
output = torch.empty_like(query_states)
for head in range(query_states.size(1)):
q = query_states[:, head, :, :].unsqueeze(1)
k = key_states[:, head, :, :].unsqueeze(1)
v = value_states[:, head, :, :].unsqueeze(1)
if is_flash_attn_2_available():
attn_output = flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q.shape[2], self.head_dim)
else:
attn_output = gather_qkv(q, k, v, attention_mask)
output[:, head:head + 1] = attn_output
attn_output = output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
return forward
def gather_last_q_vertical_slash_topk_vllm(self, q, k, v, head_id):
kv_seq_len = k.size(2)
head_dim = q.size(-1)
def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size):
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
last_q = min(64, q_len)
qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k)
qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK[...,-last_q:,-last_q:], qk[:, :, :, -last_q:], -torch.inf)
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
vertical = qk.sum(-2, keepdim=True)
vertical[...,:30] = torch.inf
vertical_topk = torch.topk(vertical, vertical_size, -1).indices
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
slash[...,-100:] = torch.inf
slash_topk = slash
slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices
return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash)
def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None):
topk = 100
return block_sparse_attention(q, k, v, topk)
def dense(q, k, v, vertical_size=None, slash_size=None):
return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, head_dim)
q_len = q.shape[2]
bsz = q.shape[0]
ty, vertical_size, slash_size, _ = self.best_pattern[head_id]
if q_len == 1:
return dense(q, k, v)
fc = {
"stream_llm": streaming_forward,
"vertical_and_slash": vertical_and_slash_kernel,
"block_sparse": block_sparse_kernel,
}[ty]
return fc(q, k, v, vertical_size, slash_size)
def minference_vllm_forward(
pattern_config
):
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata[FlashAttentionMetadata],
kv_scale: float,
layer_idx: int,
) -> torch.Tensor:
"""Forward pass with FlashAttention and PagedAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
self.best_pattern = {int(ii): jj for ii, jj in pattern_config[layer_idx].items()}
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
slen, num_key_value_heads, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, None, :, :].expand(slen, n_rep, num_key_value_heads, head_dim)
return hidden_states.reshape(slen, num_key_value_heads * n_rep, head_dim)
def minference_prefill_func(
q, k, v,
):
# (seq_len, num_heads, head_size)
if q.size(-2) != k.size(-2):
k = repeat_kv(k, q.size(-2) // k.size(-2))
v = repeat_kv(v, q.size(-2) // v.size(-2))
output = torch.empty_like(q)
for head in range(q.size(-2)):
q_head = q[:, head, :].unsqueeze(1)
k_head = k[:, head, :].unsqueeze(1)
v_head = v[:, head, :].unsqueeze(1)
# (1, seq_len, num_heads, head_size)
q_head = q_head[None, ...]
k_head = k_head[None, ...]
v_head = v_head[None, ...]
q_head = q_head.transpose(1, 2)
k_head = k_head.transpose(1, 2)
v_head = v_head.transpose(1, 2)
out = self.gather_last_q_vertical_slash_topk_vllm(q_head, k_head, v_head, head)
out = out.transpose(1, 2).squeeze(0).contiguous()
output[:, head:head+1, :] = out
return output
num_tokens, hidden_size = query.shape
# Reshape the query, key, and value tensors.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
if kv_cache is not None:
key_cache, value_cache = PagedAttention.split_kv_cache(
kv_cache, self.num_kv_heads, self.head_size)
# Reshape the input keys and values and store them in the cache.
# If kv_cache is not provided, the new key and value tensors are
# not cached. This happens during the initial memory profiling run.
PagedAttention.write_to_paged_cache(key, value, key_cache,
value_cache,
attn_metadata.slot_mapping,
attn_metadata.kv_cache_dtype,
kv_scale)
num_prefill_tokens = attn_metadata.num_prefill_tokens
num_decode_tokens = attn_metadata.num_decode_tokens
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
output = torch.empty_like(query)
# Query for decode. KV is not needed because it is already cached.
decode_query = query[num_prefill_tokens:]
# QKV for prefill.
query = query[:num_prefill_tokens]
key = key[:num_prefill_tokens]
value = value[:num_prefill_tokens]
assert query.shape[0] == num_prefill_tokens
assert decode_query.shape[0] == num_decode_tokens
if prefill_meta := attn_metadata.prefill_metadata:
# Prompt run.
if kv_cache is None or prefill_meta.block_tables.numel() == 0:
# normal attention
# When block_tables are not filled, it means q and k are the
# prompt, and they have the same length.
# (seq_len, num_heads, head_size)
# out = flash_attn_varlen_func(
# q=query,
# k=key,
# v=value,
# cu_seqlens_q=prefill_meta.seq_start_loc,
# cu_seqlens_k=prefill_meta.seq_start_loc,
# max_seqlen_q=prefill_meta.max_prompt_len,
# max_seqlen_k=prefill_meta.max_prompt_len,
# softmax_scale=self.scale,
# causal=True,
# window_size=self.sliding_window,
# alibi_slopes=self.alibi_slopes,
# )
out = minference_prefill_func(query, key, value)
assert output[:num_prefill_tokens].shape == out.shape
output[:num_prefill_tokens] = out
else:
# prefix-enabled attention
# TODO(Hai) this triton kernel has regression issue (broke) to
# deal with different data types between KV and FP8 KV cache,
# to be addressed separately.
output[:num_prefill_tokens] = PagedAttention.forward_prefix(
query,
key,
value,
key_cache,
value_cache,
prefill_meta.block_tables,
prefill_meta.subquery_start_loc,
prefill_meta.prompt_lens_tensor,
prefill_meta.context_lens,
prefill_meta.max_subquery_len,
self.alibi_slopes,
)
if decode_meta := attn_metadata.decode_metadata:
# Decoding run.
output[num_prefill_tokens:] = PagedAttention.forward_decode(
decode_query,
key_cache,
value_cache,
decode_meta.block_tables,
decode_meta.context_lens,
decode_meta.max_context_len,
attn_metadata.kv_cache_dtype,
self.num_kv_heads,
self.scale,
self.alibi_slopes,
kv_scale,
)
# Reshape the output tensor.
return output.view(num_tokens, hidden_size)
return forward
|