File size: 40,699 Bytes
24083d5
 
 
43a7079
 
 
 
 
 
24083d5
 
 
 
43a7079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
# Copyright (c) 2024 Microsoft
# Licensed under The MIT License [see LICENSE for details]

import inspect
import json
import os
from importlib import import_module

from transformers.models.llama.modeling_llama import *
from transformers.utils.import_utils import _is_package_available

if _is_package_available("vllm"):
    from vllm.attention.backends.flash_attn import *

from ..ops.block_sparse_flash_attention import block_sparse_attention
from ..ops.pit_sparse_flash_attention_v2 import vertical_slash_sparse_attention
from ..ops.streaming_kernel import streaming_forward, streaming_forward2
from .snap_kv import *

last_q = 64
arange = torch.arange(last_q, device="cuda")
LAST_Q_MASK = arange[None, None, :, None] >= arange[None, None, None, :]
ROPE_TYPE = None
SEARCH_MASK = None

def init_minference_parameters(self):
    config = self.config.to_dict()
    self.starting_layer = config.get("starting_layer", 0)
    self.is_search = config.get("is_search", False)

    # self.n_init = config.get("n_init", 128)
    # self.n_local = config.get("n_local", 3968)

    self.ne_inf = None
    self.config_path = config.get("config_path", "")
    if os.path.exists(self.config_path) and self.layer_idx < len(json.load(open(self.config_path))):
        self.best_pattern = {int(ii): jj for ii, jj in json.load(open(self.config_path))[self.layer_idx].items()}
    else:
        self.best_pattern = {}
    self.vertical, self.slash = None, None

    # import apply_rotary_pos_emb
    if "apply_rotary_pos_emb" not in self.__dict__:
        global apply_rotary_pos_emb
        model_path = self.rotary_emb.__class__.__module__
        apply_rotary_pos_emb = getattr(import_module(model_path), "apply_rotary_pos_emb")
        self.apply_rotary_pos_emb = True

def sum_all_diagonal_matrix(mat: torch.tensor):
    b, h, n, m = mat.shape
    zero_mat = torch.zeros((b, h, n, n)).to(mat.device) # Zero matrix used for padding
    mat_padded =  torch.cat((zero_mat, mat, zero_mat), -1) # pads the matrix on left and right
    mat_strided = mat_padded.as_strided((1, 1, n, n + m), (1, n * (2 * n + m), 2 * n + m + 1, 1)) # Change the strides
    sum_diags = torch.sum(mat_strided, 2) # Sums the resulting matrix's columns
    return sum_diags[:,:,1:]

def gather(t, dim, i):
    """A broadcasting version of torch.gather."""
    dim += (dim < 0) * t.ndim
    return t.gather(dim, i.expand(*t.shape[:dim], i.shape[dim], *t.shape[dim + 1 :]))

def gather_qkv(q, k, v, attention_mask):
    attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(q.size(-1)) + attention_mask
    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
    attn_output = torch.matmul(attn_weights, v)
    return attn_output

def search_pattern(q, k, head):
    q_len = q.shape[2]
    head_dim = q.shape[-1]

    def vertical_and_slash(vertical_size, slash_size):
        last_q = 64
        q_len = q.shape[2]
        qk_idxs = [ii + q_len for ii in list(range(-last_q, 0, 1))]
        qk = torch.matmul(q[:,:,qk_idxs,:], k.transpose(2, 3))/ math.sqrt(head_dim) + attention_mask[:,:,qk_idxs]
        qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
        vertical = qk.sum(-2, keepdim=True)
        vertical[...,:30] = 10000
        vertical_topk = torch.topk(-vertical, q_len - vertical_size, -1).indices

        slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
        slash[...,-30:] = 10000
        slash_topk = slash
        slash = torch.topk(slash, slash_size, -1).indices - (q_len - 1)
        slash = torch.stack([torch.sparse.spdiags(torch.ones(slash_size, q_len), slash.cpu()[0][_], (q_len, q_len)).to_dense() for _ in range(1)]).to(q.device)

        est_attn = torch.ones_like(attn_weights)
        dim = 3
        est_attn = est_attn.scatter(3, vertical_topk.expand(*est_attn.shape[:dim], vertical_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0)
        est_attn = est_attn + slash

        est_attn = (est_attn > 0).float()
        est_attn = torch.tril(est_attn)
        attn_weights_x = attn_weights * est_attn
        res3 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy()
        return res3

    def stream_llm(vertical_size, slash_size):
        q_len = q.shape[2]

        mask = torch.triu(torch.tril(torch.ones(q_len, q_len), 0), -slash_size).to(q)
        mask[:,:vertical_size] = 1
        mask = mask.unsqueeze(0).unsqueeze(1)

        est_attn = torch.tril(mask)
        attn_weights_x = attn_weights * est_attn
        res3 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy()
        return res3

    def block_sparse(topk_ratio, slash_size=None):
        block_num = (q_len -1) // 32 + 1
        block_q = torch.zeros(1,1,block_num * 32,head_dim).to(q)
        block_q[:,:,:q_len] = q
        block_q = block_q.reshape(1,1,block_num,32,-1).mean(-2)
        block_k = torch.zeros(1,1,block_num * 32,head_dim).to(k)
        block_k[:,:,:q_len] = k
        block_k = block_k.reshape(1,1,block_num,32,-1).mean(-2)

        qk = torch.matmul(block_q, block_k.transpose(2, 3)) + attention_mask[:,:,:block_num,:block_num]
        est_attn = torch.ones_like(qk)
        block_topk = torch.topk(-qk, block_num - block_num//topk_ratio, -1).indices

        dim = 3
        est_attn = est_attn.scatter(3, block_topk.expand(*est_attn.shape[:dim], block_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0)
        est_attn = est_attn.unsqueeze(3).unsqueeze(-1).repeat(1,1,1,32,1,32).reshape(1,1,block_num * 32, block_num * 32)[...,:q_len,:q_len]
        est_attn = torch.tril(est_attn)

        attn_weights_x = attn_weights * est_attn
        res2 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy()
        return res2

    global SEARCH_MASK
    if SEARCH_MASK is None:
        attention_mask = torch.full((q_len, q_len), torch.finfo(q.dtype).min, device="cuda")
        mask_cond = torch.arange(attention_mask.size(-1), device="cuda")
        attention_mask.masked_fill_(mask_cond < (mask_cond + 1).view(attention_mask.size(-1), 1), 0)
        attention_mask = attention_mask[None, None, :]
        SEARCH_MASK = attention_mask
    else:
        attention_mask = SEARCH_MASK
    attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(head_dim) + attention_mask
    attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
    best_s, best_v, best_score, best_ty = 0, 0, 0, ""
    all_info = []
    for ty, fc in [("stream_llm", stream_llm), ("vertical_and_slash", vertical_and_slash), ("block_sparse", block_sparse)]:
        if ty == "stream_llm":
            vs_list = [(100, 800)]
        elif ty == "vertical_and_slash":
            vs_list = [(30, 800), (100, 750), (500, 700), (3500, 100)]
        else:
            vs_list = [(8, 1)]
        for v_size, s_size in vs_list:
            score = fc(v_size, s_size)
            score = score.item()
            all_info.append([ty, v_size, s_size, score])
            if score > best_score:
                best_score = score
                best_s, best_v = s_size, v_size
                best_ty = ty
    if best_ty == "stream_llm":
        best_ty = "vertical_and_slash"
    if best_ty == "block_sparse":
        best_ty, best_v, best_s = "vertical_and_slash", 1000, 6096
    print(head, best_ty, best_v, best_s, best_score)
    return (best_ty, best_v, best_s, best_score)

def search_pattern_v2(q, k, v, head):
    q_len = q.shape[2]
    head_dim = q.shape[-1]
    def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size):
        vertical_size, slash_size  = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
        last_q = 64
        qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k)
        qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK, qk[:, :, :, -last_q:], -torch.inf)
        qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
        vertical = qk.sum(-2, keepdim=True)
        vertical[...,:30] = torch.inf
        vertical_topk = torch.topk(vertical, vertical_size, -1).indices

        slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
        slash[...,-30:] = torch.inf
        slash_topk = slash
        slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices

        return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash)
    def dense(q, k, v, vertical_size=None, slash_size=None):
        return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, head_dim)
    def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None):
        topk = 100
        return block_sparse_attention(q, k, v, topk)

    best_s, best_v, best_score, best_ty = 0, 0, float("inf"), ""
    bsz = q.shape[0]
    all_info = []
    ref = dense(q, k, v)
    for ty, fc in [("stream_llm", streaming_forward), ("vertical_and_slash", vertical_and_slash_kernel), ("block_sparse", block_sparse_kernel)]:
        if ty == "stream_llm":
            vs_list = [(100, 800)]
        elif ty == "vertical_and_slash":
            vs_list = [(30, 800), (100, 800), (100, 750), (500, 700), (3500, 100), (1000, 4096)]
        else:
            vs_list = [(10, 1)]
        for v_size, s_size in vs_list:
            score = fc(q, k, v, v_size, s_size)
            # delta = (ref - score).abs().sum()
            delta = ((ref - score).abs() > 5e-3).sum()
            score = delta.item()
            all_info.append([ty, v_size, s_size, score])
            if score < best_score:
                best_score = score
                best_s, best_v = s_size, v_size
                best_ty = ty
    print(head, best_ty, best_v, best_s, best_score)
    return all_info

def shift_matrix(mat):
    b, h, _, n = mat.shape
    zero_mat = torch.zeros((b, h, n, n)).to(mat.device) # Zero matrix used for padding
    mat_padded =  torch.cat((zero_mat, mat, zero_mat), -1) # pads the matrix on left and right
    mat_strided = mat_padded.as_strided((1, 1, n, n + 2 * n), (1, n * (2 * n + n), 2 * n + n - 1, 1)) # Change the strides
    return mat_strided[...,2 * n-1:-1]

def repeat(self, q, k, v, attention_mask):
    q_len = q.shape[2]
    if q_len == 1:
        return gather_qkv(q, k, v, attention_mask)
    qk = torch.matmul(q[:,:,-1:,:], k.transpose(2, 3)) / math.sqrt(self.head_dim)
    qk = qk.repeat(1,1,q_len, 1)
    qk = shift_matrix(qk) + attention_mask
    attn_weights = nn.functional.softmax(qk, dim=-1, dtype=torch.float32).to(q.dtype)
    attn_output = torch.matmul(attn_weights, v)
    return attn_output

def gather_last_q_vertical_slash_topk_v4(self, q, k, v, head_id):
    kv_seq_len = k.size(2)

    def vertical_and_slash(attn_weights, vertical_size, slash_size):
        last_q = 64
        q_len = q.shape[2]
        vertical_size, slash_size  = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
        qk_idxs = [ii + q_len for ii in list(range(-last_q, 0, 1))]
        qk = torch.matmul(q[:,:,qk_idxs,:], k.transpose(2, 3))/ math.sqrt(self.head_dim) + attention_mask[:,:,qk_idxs]
        qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
        vertical = qk.sum(-2, keepdim=True)
        vertical[...,:30] = -self.ne_inf
        vertical_topk = torch.topk(-vertical, q_len - vertical_size, -1).indices

        slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
        slash[...,-30:] = -self.ne_inf
        slash_topk = slash
        slash = torch.topk(slash, slash_size, -1).indices - (q_len - 1)
        slash = torch.stack([torch.sparse.spdiags(torch.ones(slash_size, q_len), slash.cpu()[0][_], (q_len, q_len)).to_dense() for _ in range(1)]).to(q.device)

        est_attn = torch.ones_like(attn_weights)
        dim = 3
        est_attn = est_attn.scatter(3, vertical_topk.expand(*est_attn.shape[:dim], vertical_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0)
        est_attn = est_attn + slash

        est_attn = (est_attn > 0).float()
        est_attn = torch.tril(est_attn)
        est_attn = (est_attn == 0).int() * self.ne_inf
        attn_weights = attn_weights + est_attn
        if self.kv_cache_compressed_v4:
            self.vertical = torch.topk(vertical, vertical_size * 4, -1).indices
            self.slash = (torch.topk(slash_topk, slash_size * 4, -1).indices - (q_len - 1)).unsqueeze(2)
        return attn_weights

    def stream_llm(attn_weights, vertical_size, slash_size):
        q_len = q.shape[2]
        vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
        mask = torch.triu(torch.tril(torch.ones(q_len, q_len), 0), -slash_size).to(q)
        mask[:,:vertical_size] = 1
        mask = mask.unsqueeze(0).unsqueeze(1)

        est_attn = torch.tril(mask)
        est_attn = (est_attn == 0).int() * self.ne_inf
        attn_weights = attn_weights + est_attn
        if self.kv_cache_compressed_v4:
            self.vertical = torch.Tensor(list(range(vertical_size * 4))).long().to(q.device).unsqueeze(0).unsqueeze(0).unsqueeze(0)
            self.slash = torch.Tensor(list(range(-slash_size * 4, 1))).long().to(q.device).unsqueeze(0).unsqueeze(0).unsqueeze(0)
        return attn_weights

    def block_sparse(attn_weights, topk_ratio, slash_size=None, block_size=8):
        block_num = (q_len -1) // block_size + 1
        block_q = torch.zeros(1,1,block_num * block_size,head_dim).to(q)
        block_q[:,:,:q_len] = q
        block_q = block_q.reshape(1,1,block_num,block_size,-1).mean(-2)
        block_k = torch.zeros(1,1,block_num * block_size,head_dim).to(k)
        block_k[:,:,:q_len] = k
        block_k = block_k.reshape(1,1,block_num,block_size,-1).mean(-2)

        qk = torch.matmul(block_q, block_k.transpose(2, 3)) + attention_mask[:,:,:block_num,:block_num]
        est_attn = torch.ones_like(qk)
        block_topk = torch.topk(-qk, block_num - block_num//topk_ratio, -1).indices

        dim = 3
        est_attn = est_attn.scatter(3, block_topk.expand(*est_attn.shape[:dim], block_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0)
        est_attn = est_attn.unsqueeze(3).unsqueeze(-1).repeat(1,1,1,block_size,1,block_size).reshape(1,1,block_num * block_size, block_num * block_size)[...,:q_len,:q_len]
        est_attn = torch.tril(est_attn)
        est_attn = (est_attn == 0).int()
        attn_weights = attn_weights + est_attn
        return attn_weights

    def dialted(q,k,v, type):
        q_len = q.shape[2]
        n_init = min(1024, q_len)
        vertical_topk = torch.arange(0, n_init, device=q.device)[None, None, None, :]

        slash = torch.arange(0, q_len, device=q.device)
        if type == 'dilated1':
            # 8k local with 1 interval
            slash = slash[-8192::2][None, None, :]
        elif type == 'dilated2':
            # 2k dense local + 4k local with 1 interval
            slash = torch.cat([slash[-2048:], slash[-6144:-2048:2]], 0)[None, None, :]

        slash = (q_len - 1) - slash
        return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash)

    def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size):
        vertical_size, slash_size  = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
        last_q = min(64, q_len)
        qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k)
        qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK[...,-last_q:,-last_q:].to(q.device), qk[:, :, :, -last_q:], -torch.inf)
        qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
        vertical = qk.sum(-2, keepdim=True)
        vertical[...,:30] = torch.inf
        vertical_topk = torch.topk(vertical, vertical_size, -1).indices

        slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
        slash[...,-100:] = torch.inf
        slash_topk = slash
        slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices

        return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash)

    def vertical_and_slash_kernel_static(q, k, v, vertical_size, slash_size):
        if "vs" in self.__dict__:
            vertical_topk, slash = self.vs
        else:
            vertical_size, slash_size  = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
            last_q = 64
            qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k)
            qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK, qk[:, :, :, -last_q:], -torch.inf)
            qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
            vertical = qk.sum(-2, keepdim=True)
            vertical[...,:30] = torch.inf
            vertical_topk = torch.topk(vertical, vertical_size, -1).indices

            slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
            slash[...,-30:] = torch.inf
            slash_topk = slash
            slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices
            self.vs = vertical_topk, slash

        return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash)
    def dense(q, k, v, vertical_size=None, slash_size=None):
        return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, self.head_dim)
    def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None):
        topk = 100
        return block_sparse_attention(q, k, v, topk)

    q_len = q.shape[2]
    bsz = q.shape[0]

    if self.config.to_dict().get("dilated1", False):
        return dialted(q, k, v, 'dilated1')
    if self.config.to_dict().get("dilated2", False):
        return dialted(q, k, v, 'dilated2')
    if self.config.to_dict().get("dense", False):
        return dense(q, k, v)
    if self.config.to_dict().get("streaming", False):
        return streaming_forward(q, k, v, self.config.streaming_kwargs["n_init"], self.config.streaming_kwargs["n_local"])

    ty, vertical_size, slash_size, _ = self.best_pattern.get(head_id, ("vertical_and_slash", 1000, 6096, 1))

    if self.config.to_dict().get("static_pattern", False):
        return vertical_and_slash_kernel_static(q, k, v, vertical_size, slash_size)
    if self.config.to_dict().get("vs_only", False):
        return vertical_and_slash_kernel(q, k, v, vertical_size, slash_size)

    if q_len == 1:
        return dense(q, k, v)

    fc = {
        "stream_llm": streaming_forward,
        "vertical_and_slash": vertical_and_slash_kernel,
        "block_sparse": block_sparse_kernel,
    }[ty]
    return fc(q, k, v, vertical_size, slash_size)

def apply_rotary_pos_emb_single(q, cos, sin, position_ids, unsqueeze_dim=1):
    # cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    # sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    return (q * cos) + (rotate_half(q) * sin)

def minference_forward():
    def forward(
        self,
        hidden_states,
        attention_mask,
        position_ids,
        past_key_value,
        output_attentions,
        use_cache,
        **kwargs,
    ):
        self.init_minference_parameters()
        self.ne_inf = torch.finfo(hidden_states.dtype).min

        bsz, q_len, _ = hidden_states.size()

        if "q_proj" in self.__dict__["_modules"]:
            query_states = self.q_proj(hidden_states)
            key_states = self.k_proj(hidden_states)
            value_states = self.v_proj(hidden_states)
        else:
            qkv = self.qkv_proj(hidden_states)
            query_pos = self.num_heads * self.head_dim
            query_states, key_states, value_states = torch.split(qkv, query_pos, -1)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
        global ROPE_TYPE
        if ROPE_TYPE is None:
            ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters
        if ROPE_TYPE:
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        else:
            cos, sin = self.rotary_emb(value_states, position_ids)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        if self.is_search:
            if os.path.exists(self.config_path):
                config_list = json.load(open(self.config_path))
                if self.layer_idx < len(config_list):
                    assert False
            else:
                config_list = []
            config = {}
            print("Layer", self.layer_idx)
        if q_len != 1:
            output = torch.empty_like(query_states)
            for head in range(query_states.size(1)):
                q = query_states[:, head, :, :].unsqueeze(1)
                k = key_states[:, head, :, :].unsqueeze(1)
                v = value_states[:, head, :, :].unsqueeze(1)
                if self.is_search:
                    config[head] = search_pattern(q, k, head)
                if self.layer_idx >= self.starting_layer and not self.is_search:
                    attn_output = self.gather_last_q_vertical_slash_topk_v4(q, k, v, head)
                elif is_flash_attn_2_available():
                    attn_output = flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, self.head_dim)
                else:
                    attn_output = gather_qkv(q, k, v, attention_mask)
                output[:, head:head + 1] = attn_output
            if self.is_search:
                config_list.append(config)
                with open(self.config_path, 'w') as json_file:
                    json.dump(config_list, json_file)
        else:
            output =  flash_attn_func(query_states.transpose(1, 2), key_states.transpose(1, 2), value_states.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, query_states.size(1), q_len, self.head_dim)
        attn_output = output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
        attn_output = self.o_proj(attn_output)

        return attn_output, None, past_key_value

    return forward

def minference_kv_cache_cpu_forward():
    def forward(
        self,
        hidden_states,
        attention_mask,
        position_ids,
        past_key_value,
        output_attentions,
        use_cache,
        **kwargs,
    ):
        self.init_minference_parameters()
        self.ne_inf = torch.finfo(hidden_states.dtype).min

        bsz, q_len, hidden_dim = hidden_states.size()
        kv_seq_len = q_len
        if use_cache and past_key_value is not None:
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

        global ROPE_TYPE
        if ROPE_TYPE is None:
            ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters
        if ROPE_TYPE:
            cos, sin = self.rotary_emb(hidden_states, seq_len=kv_seq_len)
        else:
            cos, sin = self.rotary_emb(hidden_states, position_ids)
        cache_kwargs = {"sin": sin, "cos": cos}

        attn_out = torch.empty_like(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
        act_num_heads = self.num_heads // self.num_key_value_groups
        if use_cache:
            k = torch.zeros(bsz, act_num_heads, q_len, self.head_dim).to(hidden_states.dtype).cpu()
            v = torch.zeros(bsz, act_num_heads, q_len, self.head_dim).to(hidden_states.dtype).cpu()
        part_k, part_v = None, None
        for head in range(self.num_heads):
            if "q_proj" in self.__dict__["_modules"]:
                part_q = F.linear(hidden_states, self.q_proj.weight.view(self.num_heads, self.head_dim, hidden_dim)[head]).unsqueeze(2)
            else:
                part_q = F.linear(hidden_states, self.qkv_proj.weight.view(3, self.num_heads, self.head_dim, hidden_dim)[0][head]).unsqueeze(2)
            part_q = apply_rotary_pos_emb_single(part_q.transpose(1, 2), cos, sin, position_ids)

            if head % self.num_key_value_groups == 0:
                if "q_proj" in self.__dict__["_modules"]:
                    part_k = F.linear(hidden_states, self.k_proj.weight.view(act_num_heads, self.head_dim, hidden_dim)[head // self.num_key_value_groups]).unsqueeze(2)
                    part_v = F.linear(hidden_states, self.v_proj.weight.view(act_num_heads, self.head_dim, hidden_dim)[head // self.num_key_value_groups]).unsqueeze(2).transpose(1, 2)
                else:
                    part_k = F.linear(hidden_states, self.qkv_proj.weight.view(3, act_num_heads, self.head_dim, hidden_dim)[1][head // self.num_key_value_groups]).unsqueeze(2)
                    part_v = F.linear(hidden_states, self.qkv_proj.weight.view(3, act_num_heads, self.head_dim, hidden_dim)[2][head // self.num_key_value_groups]).unsqueeze(2).transpose(1, 2)

                part_k = apply_rotary_pos_emb_single(part_k.transpose(1, 2), cos, sin, position_ids)
                if use_cache and past_key_value is not None:
                    k[:,head // self.num_key_value_groups] = part_k.cpu()
                    v[:,head // self.num_key_value_groups] = part_v.cpu()
                    part_k, part_v = past_key_value.get(part_k, part_v, self.layer_idx, head // self.num_key_value_groups, cache_kwargs)

            if self.layer_idx >= self.starting_layer:
                part_o = self.gather_last_q_vertical_slash_topk_v4(part_q, part_k, part_v, head)
            else:
                part_o = flash_attn_func(part_q, part_k, part_v.transpose(1, 2), 0.0, softmax_scale=None, causal=True).view(bsz, part_q.shape[1], self.head_dim)
            attn_out[:, :, head, :] = part_o

        if use_cache and past_key_value is not None:
            past_key_value.update(k, v, self.layer_idx, cache_kwargs)
        torch.matmul(attn_out.view(bsz, q_len, hidden_dim), self.o_proj.weight.T, out=hidden_states)
        torch.cuda.empty_cache()
        return (hidden_states, None, past_key_value)

    return forward

def minference_with_snapkv_forward():
    def forward(
        self,
        hidden_states,
        attention_mask,
        position_ids,
        past_key_value,
        output_attentions,
        use_cache,
        **kwargs,
    ):
        self.init_minference_parameters()
        self.ne_inf = torch.finfo(hidden_states.dtype).min

        init_snapkv(self)

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )

            if hasattr(self, "kv_seq_len"): #[SnapKV] add kv_seq_len
                if self.kv_seq_len != 0:
                    kv_seq_len += self.kv_seq_len
                else:
                    kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
            else:
                kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
        global ROPE_TYPE
        if ROPE_TYPE is None:
            ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters
        if ROPE_TYPE:
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        else:
            cos, sin = self.rotary_emb(value_states, position_ids)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            if key_states.shape[-2] == kv_seq_len: # [SnapKV] add kv_cluster
                self.kv_seq_len = kv_seq_len # [SnapKV] register kv_seq_len
                key_states_compress, value_states_compress = self.kv_cluster.update_kv(key_states, query_states, value_states, attention_mask, self.num_key_value_groups)
                past_key_value.update(key_states_compress, value_states_compress, self.layer_idx, cache_kwargs)
            else:
                self.kv_seq_len += q_len
                key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        if self.layer_idx >= self.starting_layer:
            assert query_states.size(1) == key_states.size(1) == value_states.size(1)
            output = torch.empty_like(query_states)
            for head in range(query_states.size(1)):
                q = query_states[:, head, :, :].unsqueeze(1)
                k = key_states[:, head, :, :].unsqueeze(1)
                v = value_states[:, head, :, :].unsqueeze(1)
                output[:, head:head + 1] = self.gather_last_q_vertical_slash_topk_v4(q, k, v, head)

            attn_output = output.transpose(1, 2).contiguous()
            attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
            attn_output = self.o_proj(attn_output)
            return attn_output, None, past_key_value

        else:
            output = torch.empty_like(query_states)
            for head in range(query_states.size(1)):
                q = query_states[:, head, :, :].unsqueeze(1)
                k = key_states[:, head, :, :].unsqueeze(1)
                v = value_states[:, head, :, :].unsqueeze(1)
                if is_flash_attn_2_available():
                    attn_output = flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q.shape[2], self.head_dim)
                else:
                    attn_output = gather_qkv(q, k, v, attention_mask)
                output[:, head:head + 1] = attn_output
            attn_output = output.transpose(1, 2).contiguous()
            attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
            attn_output = self.o_proj(attn_output)

            return attn_output, None, past_key_value

    return forward

def gather_last_q_vertical_slash_topk_vllm(self, q, k, v, head_id):
    kv_seq_len = k.size(2)
    head_dim = q.size(-1)

    def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size):
        vertical_size, slash_size  = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50))
        last_q = min(64, q_len)
        qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k)

        qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK[...,-last_q:,-last_q:], qk[:, :, :, -last_q:], -torch.inf)
        qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32)
        vertical = qk.sum(-2, keepdim=True)
        vertical[...,:30] = torch.inf
        vertical_topk = torch.topk(vertical, vertical_size, -1).indices

        slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1]
        slash[...,-100:] = torch.inf
        slash_topk = slash
        slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices

        return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash)

    def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None):
        topk = 100
        return block_sparse_attention(q, k, v, topk)

    def dense(q, k, v, vertical_size=None, slash_size=None):
        return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, head_dim)

    q_len = q.shape[2]
    bsz = q.shape[0]

    ty, vertical_size, slash_size, _ = self.best_pattern[head_id]

    if q_len == 1:
        return dense(q, k, v)

    fc = {
        "stream_llm": streaming_forward,
        "vertical_and_slash": vertical_and_slash_kernel,
        "block_sparse": block_sparse_kernel,
    }[ty]
    return fc(q, k, v, vertical_size, slash_size)

def minference_vllm_forward(
    pattern_config
):
    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        kv_cache: torch.Tensor,
        attn_metadata: AttentionMetadata[FlashAttentionMetadata],
        kv_scale: float,
        layer_idx: int,
    ) -> torch.Tensor:
        """Forward pass with FlashAttention and PagedAttention.

        Args:
            query: shape = [num_tokens, num_heads * head_size]
            key: shape = [num_tokens, num_kv_heads * head_size]
            value: shape = [num_tokens, num_kv_heads * head_size]
            kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
            attn_metadata: Metadata for attention.
        Returns:
            shape = [num_tokens, num_heads * head_size]
        """
        self.best_pattern = {int(ii): jj for ii, jj in pattern_config[layer_idx].items()}
        def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
            """
            This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
            num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
            """
            slen, num_key_value_heads, head_dim = hidden_states.shape
            if n_rep == 1:
                return hidden_states
            hidden_states = hidden_states[:, None, :, :].expand(slen, n_rep, num_key_value_heads, head_dim)
            return hidden_states.reshape(slen, num_key_value_heads * n_rep, head_dim)

        def minference_prefill_func(
            q, k, v,

        ):
            # (seq_len, num_heads, head_size)
            if q.size(-2) != k.size(-2):
                k = repeat_kv(k, q.size(-2) // k.size(-2))
                v = repeat_kv(v, q.size(-2) // v.size(-2))

            output = torch.empty_like(q)
            for head in range(q.size(-2)):
                q_head = q[:, head, :].unsqueeze(1)
                k_head = k[:, head, :].unsqueeze(1)
                v_head = v[:, head, :].unsqueeze(1)

                # (1, seq_len, num_heads, head_size)
                q_head = q_head[None, ...]
                k_head = k_head[None, ...]
                v_head = v_head[None, ...]

                q_head = q_head.transpose(1, 2)
                k_head = k_head.transpose(1, 2)
                v_head = v_head.transpose(1, 2)

                out = self.gather_last_q_vertical_slash_topk_vllm(q_head, k_head, v_head, head)

                out = out.transpose(1, 2).squeeze(0).contiguous()
                output[:, head:head+1, :] = out
            return output

        num_tokens, hidden_size = query.shape
        # Reshape the query, key, and value tensors.
        query = query.view(-1, self.num_heads, self.head_size)
        key = key.view(-1, self.num_kv_heads, self.head_size)
        value = value.view(-1, self.num_kv_heads, self.head_size)

        if kv_cache is not None:
            key_cache, value_cache = PagedAttention.split_kv_cache(
                kv_cache, self.num_kv_heads, self.head_size)

            # Reshape the input keys and values and store them in the cache.
            # If kv_cache is not provided, the new key and value tensors are
            # not cached. This happens during the initial memory profiling run.
            PagedAttention.write_to_paged_cache(key, value, key_cache,
                                                value_cache,
                                                attn_metadata.slot_mapping,
                                                attn_metadata.kv_cache_dtype,
                                                kv_scale)

        num_prefill_tokens = attn_metadata.num_prefill_tokens
        num_decode_tokens = attn_metadata.num_decode_tokens
        assert key.shape[0] == num_prefill_tokens + num_decode_tokens
        assert value.shape[0] == num_prefill_tokens + num_decode_tokens

        output = torch.empty_like(query)
        # Query for decode. KV is not needed because it is already cached.
        decode_query = query[num_prefill_tokens:]
        # QKV for prefill.
        query = query[:num_prefill_tokens]
        key = key[:num_prefill_tokens]
        value = value[:num_prefill_tokens]

        assert query.shape[0] == num_prefill_tokens
        assert decode_query.shape[0] == num_decode_tokens

        if prefill_meta := attn_metadata.prefill_metadata:
            # Prompt run.
            if kv_cache is None or prefill_meta.block_tables.numel() == 0:
                # normal attention
                # When block_tables are not filled, it means q and k are the
                # prompt, and they have the same length.
                # (seq_len, num_heads, head_size)
                # out = flash_attn_varlen_func(
                #     q=query,
                #     k=key,
                #     v=value,
                #     cu_seqlens_q=prefill_meta.seq_start_loc,
                #     cu_seqlens_k=prefill_meta.seq_start_loc,
                #     max_seqlen_q=prefill_meta.max_prompt_len,
                #     max_seqlen_k=prefill_meta.max_prompt_len,
                #     softmax_scale=self.scale,
                #     causal=True,
                #     window_size=self.sliding_window,
                #     alibi_slopes=self.alibi_slopes,
                # )
                out = minference_prefill_func(query, key, value)
                assert output[:num_prefill_tokens].shape == out.shape
                output[:num_prefill_tokens] = out
            else:
                # prefix-enabled attention
                # TODO(Hai) this triton kernel has regression issue (broke) to
                # deal with different data types between KV and FP8 KV cache,
                # to be addressed separately.
                output[:num_prefill_tokens] = PagedAttention.forward_prefix(
                    query,
                    key,
                    value,
                    key_cache,
                    value_cache,
                    prefill_meta.block_tables,
                    prefill_meta.subquery_start_loc,
                    prefill_meta.prompt_lens_tensor,
                    prefill_meta.context_lens,
                    prefill_meta.max_subquery_len,
                    self.alibi_slopes,
                )
        if decode_meta := attn_metadata.decode_metadata:
            # Decoding run.
            output[num_prefill_tokens:] = PagedAttention.forward_decode(
                decode_query,
                key_cache,
                value_cache,
                decode_meta.block_tables,
                decode_meta.context_lens,
                decode_meta.max_context_len,
                attn_metadata.kv_cache_dtype,
                self.num_kv_heads,
                self.scale,
                self.alibi_slopes,
                kv_scale,
            )

        # Reshape the output tensor.
        return output.view(num_tokens, hidden_size)

    return forward