from chatgpt_service import ChatGPTService from everything2text4prompt.everything2text4prompt import Everything2Text4Prompt from everything2text4prompt.util import BaseData, YoutubeData, PodcastData from gradio_method_service import YoutubeChain, GradioInputs from digester.util import get_config, Prompt import json class VideoExample: def __init__(self, title, description, transcript): self.title = title self.description = description self.transcript = transcript @classmethod def get_youtube_data(cls, api_key: str, video_id: str): converter = Everything2Text4Prompt(openai_api_key=api_key) text_data, is_success, error_msg = converter.convert_text("youtube", video_id) text_data: YoutubeData title = text_data.title description = text_data.description transcript = text_data.full_content ts_transcript_list = text_data.ts_transcript_list return YoutubeData(transcript, title, description, ts_transcript_list) @staticmethod def get_nthings_10_autogpt(): video_id = "lSTEhG021Jc" return VideoExample.get_youtube_data("", video_id) @staticmethod def get_nthings_7_lifelesson(): video_id = "CUPe_TZECQQ" return VideoExample.get_youtube_data("", video_id) @staticmethod def get_nthings_8_habits(): video_id = "IScN1SOcj7A" return VideoExample.get_youtube_data("", video_id) @staticmethod def get_tutorial_skincare(): video_id = "OrElyY7MFVs" return VideoExample.get_youtube_data("", video_id) class YoutubeTestChain: def __init__(self, api_key: str, gpt_model): self.api_key = api_key self.gpt_model = gpt_model def run_testing_chain(self): input_1 = """Give me 2 ideas for the summer""" # input_1 = """Explain more on the first idea""" response_1 = ChatGPTService.single_rest_call_chatgpt(self.api_key, input_1, self.gpt_model) input_2 = """ For the first idea, suggest some step by step planning for me """ response_2 = ChatGPTService.single_rest_call_chatgpt(self.api_key, input_2, self.gpt_model, history=[input_1, response_1]) def test_youtube_classifier(self, gradio_inputs: GradioInputs, youtube_data: YoutubeData): iter = YoutubeChain.execute_classifer_chain(gradio_inputs, youtube_data) while True: next(iter) def test_youtube_timestamped_summary(self, gradio_inputs: GradioInputs, youtube_data: YoutubeData): iter = YoutubeChain.execute_timestamped_summary_chain(gradio_inputs, youtube_data) while True: next(iter) def test_youtube_final_summary(self, gradio_inputs: GradioInputs, youtube_data: YoutubeData, video_type): iter = YoutubeChain.execute_final_summary_chain(gradio_inputs, youtube_data, video_type) while True: next(iter) if __name__ == '__main__': config = get_config() api_key = config.get("openai").get("api_key") assert api_key gradio_inputs = GradioInputs(apikey_textbox=api_key, source_textbox="", source_target_textbox="", qa_textbox="", chatbot=[], history=[]) youtube_data: YoutubeData = VideoExample.get_nthings_8_habits() youtube_test_chain = YoutubeTestChain(api_key) # youtube_test_chain.test_youtube_classifier(gradio_inputs, youtube_data) youtube_test_chain.test_youtube_timestamped_summary(gradio_inputs, youtube_data) # video_type = "N things" # video_type = "Tutorials" # video_type = "Others" # youtube_test_chain.test_youtube_final_summary(gradio_inputs, youtube_data, video_type) # converter = Everything2Text4Prompt(openai_api_key="") # source_textbox = "youtube" # target_source_textbox = "CUPe_TZECQQ" # text_data, is_success, error_msg = converter.convert_text(source_textbox, target_source_textbox) # print(text_data.title) # print(text_data.description) # print(text_data.full_content) # print(text_data.ts_transcript_list)