Spaces:
Sleeping
Sleeping
import os | |
from pathlib import Path | |
import tiktoken | |
import yaml | |
tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo-16k") | |
class GradioInputs: | |
""" | |
This DTO class formalized the format of "inputs" from gradio and prevent long signature | |
It will be converted in GradioMethodService. | |
""" | |
def __init__(self, apikey_textbox, source_textbox, source_target_textbox, qa_textbox, gpt_model_textbox, language_textbox, chatbot, history): | |
self.apikey_textbox = apikey_textbox | |
self.source_textbox = source_textbox | |
self.source_target_textbox = source_target_textbox | |
self.qa_textbox = qa_textbox | |
self.gpt_model_textbox = gpt_model_textbox | |
self.language_textbox = language_textbox | |
self.chatbot = chatbot | |
self.history = history | |
class Prompt: | |
""" | |
Define the prompt structure | |
Prompt = "{prompt_prefix}{prompt_main}{prompt_suffix}" | |
where if the prompt is too long, {prompt_main} will be splitted into multiple parts to fulfill context length of LLM | |
Example: for Youtube-timestamped summary | |
prompt_prefix: Youtube Video types definitions, Title | |
prompt_main: transcript (splittable) | |
prompt_suffix: task description / constraints | |
""" | |
def __init__(self, prompt_prefix, prompt_main, prompt_suffix): | |
self.prompt_prefix = prompt_prefix | |
self.prompt_main = prompt_main | |
self.prompt_suffix = prompt_suffix | |
def get_project_root(): | |
return Path(__file__).parent.parent | |
def get_config(): | |
with open(os.path.join(get_project_root(), 'config/config.yaml'), encoding='utf-8') as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
try: | |
with open(os.path.join(get_project_root(), 'config/config_secret.yaml'), encoding='utf-8') as f: | |
config_secret = yaml.load(f, Loader=yaml.FullLoader) | |
config.update(config_secret) | |
except FileNotFoundError: | |
pass # okay to not have config_secret.yaml | |
return config | |
def get_token(text: str): | |
return len(tokenizer.encode(text, disallowed_special=())) | |
def get_first_n_tokens_and_remaining(text: str, n: int): | |
tokens = tokenizer.encode(text, disallowed_special=()) | |
return tokenizer.decode(tokens[:n]), tokenizer.decode(tokens[n:]) | |
def provide_text_with_css(text, color): | |
if color == "red": | |
return f'<span style="background-color: red; color: white; padding: 3px; border-radius: 8px;">{text}</span>' | |
elif color == "green": | |
return f'<span style="background-color: #307530; color: white; padding: 3px; border-radius: 8px;">{text}</span>' | |
elif color == "blue": | |
return f'<span style="background-color: #7b7bff; color: white; padding: 3px; border-radius: 8px;">{text}</span>' | |
elif color == "yellow": | |
return f'<span style="background-color: yellow; color: black; padding: 3px; border-radius: 8px;">{text}</span>' | |
else: | |
return text | |
if __name__ == '__main__': | |
# print(get_token("def get_token(text: str)")) | |
# print(get_token("ηγγγγγ«γ‘γ―")) | |
print(get_first_n_tokens_and_remaining("This is a string with some text to tokenize.", 30)) | |